
www.manaraa.com

Codes for Mass Data Storage
Systems

Second Edition

www.manaraa.com

www.manaraa.com

Codes for Mass Data Storage
Systems

Second Edition

Kees A. Schouhamer Immink
Institute for Experimental Mathematics,

University of Essen-Duisburg, Essen, Germany

Shannon Foundation Publishers, Eindhoven, The Netherlands.

www.manaraa.com

Published by Shannon Foundation Publishers, Eindhoven, The Netherlands.
CIP-gegevens Koninklijke Bibliotheek, Den Haag
Schouhamer Immink, K.A.
ISBN 90-74249-27-2
Information can be obtained from the living web site

www.shannonfoundation.org/book.html

All rights are reserved.
c©2004 Shannon Foundation Publishers, Eindhoven, The Netherlands
No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording or by any other storage
and retrieval system, without the written permission from the copyright
owner.

Printed in The Netherlands

www.manaraa.com

Preface

Since the early 1980s we have witnessed the digital audio and video rev-
olution: the Compact Disc (CD) has become a commodity audio system.
CD-ROM and DVD-ROM have become the de facto standard for the storage
of large computer programs and files. Growing fast in popularity are the dig-
ital audio and video recording systems called DVD and BluRay Disc. The
above mass storage products, which form the backbone of modern electronic
entertainment industry, would have been impossible without the usage of
advanced coding systems.

Pulse Code Modulation (PCM) is a process in which an analogue, audio
or video, signal is encoded into a digital bit stream. The analogue signal
is sampled, quantized and finally encoded into a bit stream. The origins
of digital audio can be traced as far back as 1937, when Alec H. Reeves,
a British scientist, invented pulse code modulation [287]. The advantages
of digital audio and video recording have been known and appreciated for
a long time. The principal advantage that digital implementation confers
over analog systems is that in a well-engineered digital recording system the
sole significant degradation takes place at the initial digitization, and the
quality lasts until the point of ultimate failure. In an analog system, quality
is diminished at each stage of signal processing and the number of recording
generations is limited. The quality of analog recordings, like the proverbial
’old soldier’, just fades away. The advent of ever-cheaper and faster dig-
ital circuitry has made feasible the creation of high-end digital video and
audio recorders, an impracticable possibility using previous generations of
conventional analog hardware.

The general subject of coding for digital recorders is very broad, with its
roots deep set in history. In digital recording (and transmission) systems,
channel encoding is employed to improve the efficiency and reliability of
the channel. Channel coding is commonly accomplished in two successive
steps: (a) error-correction code followed by (b) recording (or modulation)
code. Error-correction control is realized by adding extra symbols to the
conveyed message. These extra symbols make it possible for the receiver to
correct errors that may occur in the received message.

In the second coding step, the input data are translated into a sequence
with special properties that comply with the given ”physical nature” of the

v

www.manaraa.com

vi

recorder. Of course, it is very difficult to define precisely the area of record-
ing codes and it is even more difficult to be in any sense comprehensive.
The special attributes that the recorded sequences should have to render
it compatible with the physical characteristics of the available transmission
channel are called channel constraints. For instance, in optical recording a
’1’ is recorded as pit and a ’0’ is recorded as land. For physical reasons,
the pits or lands should neither be too long or too short. Thus, one records
only those messages that satisfy a run-length-limited (RLL) constraint. This
requires the construction of a code which translates arbitrary source data
into sequences that obey the given constraints. Many commercial recorder
products, such as Compact Disc and DVD, use an RLL code.

The main part of this book is concerned with the theoretical and prac-
tical aspects of coding techniques intended to improve the reliability and
efficiency of mass recording systems as a whole. The successful operation
of any recording code is crucially dependent upon specific properties of the
various subsystems of the recorder. There are no techniques, other than
experimental ones, available to assess the suitability of a specific coding
technique. It is therefore not possible to provide a cookbook approach for
the selection of the ’best’ recording code.

In this book, theory has been blended with practice to show how theo-
retical principles are applied to design encoders and decoders. The practi-
tioner’s view will predominate: we shall not be content with proving that
a particular code exists and ignore the practical detail that the decoder
complexity is only a billion times more complex than the largest existing
computer. The ultimate goal of all work, application, is never once lost
from sight. Much effort has been gone into the presentation of advanced
topics such as in-depth treatments of code design techniques, hardware con-
sequences, and applications. The list of references (including many US
Patents) has been made as complete as possible and suggestions for ’further
reading’ have been included for those who wish to pursue specific topics in
more detail.

The decision to update Coding Techniques for Digital Recorders, pub-
lished by Prentice-Hall (UK) in 1991, was made in Singapore during my stay
in the winter of 1998. The principal reason for this decision was that during
the last ten years or so, we have witnessed a success story of coding for con-
strained channels. The topic of this book, once the province of industrial
research, has become an active research field in academia as well. During the
IEEE International Symposia on Information Theory (ISIT) and the IEEE
International Conference on Communications (ICC), for example, there are
now usually three sessions entirely devoted to aspects of constrained coding.
As a result, very exciting new material, in the form of (conference) articles
and theses, has become available, and an update became a necessity.

The author is indebted to the Institute for Experimental Mathematics,

www.manaraa.com

vii

University of Duisburg-Essen, Germany, the Data Storage Institute (DSI)
and National University of Singapore (NUS), both in Singapore, and Prince-
ton University, US, for the opportunity offered to write this book. Among
the many people who helped me with this project, I like to thank Dr. Ludo
Tolhuizen, Philips Research Eindhoven, for reading and providing useful
comments and additions to the manuscript.

Preface to the Second Edition

About five years after the publication of the first edition, it was felt that an
update of this text would be inescapable as so many relevant publications,
including patents and survey papers, have been published. The author’s
principal aim in writing the second edition is to add the newly published
coding methods, and discuss them in the context of the prior art. As a result
about 150 new references, including many patents and patent applications,
most of them younger than five years old, have been added to the former list
of references. Fortunately, the US Patent Office now follows the European
Patent Office in publishing a patent application after eighteen months of
its first application, and this policy clearly adds to the rapid access to this
important part of the technical literature.

I am grateful to many readers who have helped me to correct (clerical)
errors in the first edition and also to those who brought new and exciting
material to my attention. I have tried to correct every error that I found
or was brought to my attention by attentive readers, and seriously tried to
avoid introducing new errors in the Second Edition.

China is becoming a major player in the art of constructing, designing,
and basic research of electronic storage systems. A Chinese translation of
the first edition has been published early 2004. The author is indebted
to prof. Xu, Tsinghua University, Beijing, for taking the initiative for this
Chinese version, and also to Mr. Zhijun Lei, Tsinghua University, for under-
taking the arduous task of translating this book from English to Chinese.
Clearly, this translation makes it possible that a billion more people will
now have access to it.

Kees A. Schouhamer Immink
Rotterdam, November 2004

www.manaraa.com

viii

www.manaraa.com

Contents

Preface viii

1 Introduction 1

2 Entropy and Capacity 9
2.1 Introduction . 9
2.2 Information content, Entropy 10

2.2.1 Entropy of memoryless sources 10
2.2.2 Markov chains . 13
2.2.3 Entropy of Markov information sources 18

2.3 Channel capacity of constrained channels 20
2.3.1 Capacity of Markov information sources 21
2.3.2 Sources with variable-length symbols 24

3 Spectral Analysis 29
3.1 Introduction . 29
3.2 Stochastic processes . 30

3.2.1 Stationary processes 30
3.2.2 Cyclo-stationary processes 32

3.3 Spectra of Markov sources 34
3.4 Description of encoder models 36
3.5 Spectra of block-coded signals 39

3.5.1 Spectral analysis of Moore-type encoders 41
3.5.2 Spectrum of memoryless block codes 45

4 Runlength-limited Sequences: Theory 51
4.1 Introduction . 51
4.2 Counting (dk) sequences . 54
4.3 Asymptotic information rate 56

4.3.1 State-transition matrix description 60
4.3.2 Useful properties . 62

4.4 Maxentropic RLL sequences 64
4.4.1 Spectrum of maxentropic RLL sequences 66
4.4.2 Comparison of results 68

ix

www.manaraa.com

x CONTENTS

4.5 Other runlength constraints 71
4.5.1 Prefix-synchronized RLL sequences 71
4.5.2 Asymmetrical runlength constraints 79
4.5.3 MTR constraints . 81
4.5.4 RLL sequences with multiple spacings 81
4.5.5 (O,G/I) sequences 84

4.6 Weak constraints . 85
4.6.1 Capacity of the weakly dk-constrained channel 85

4.7 Multi-level RLL Sequences 87
4.8 Two-dimensional RLL constraints 90
4.9 Appendix: Computation of the spectrum 93

5 RLL Block Codes 95
5.1 Introduction . 95
5.2 RLL (d, k) block codes . 96

5.2.1 Modified frequency modulation, MFM 98
5.3 Block codes of minimum length 99

5.3.1 Franaszek’s recursive elimination algorithm 100
5.3.2 State-independent decoding 104

5.4 Block codes based on (dklr) sequences 106
5.4.1 Generating functions 107
5.4.2 Constructions 1 and 2 108

5.5 Optimal block codes . 111
5.5.1 Set-concatenation . 111

5.6 Examples of RLL (d, k) block codes 113
5.6.1 EFM . 114
5.6.2 Rate 8/9, (0, 3) code 114
5.6.3 Other k-constrained codes 115
5.6.4 Sequence replacement technique 118
5.6.5 High-rate (klr) codes with uncoded symbols 119

5.7 Block-decodable RLL Codes 122
5.8 Almost block-decodable codes 126

5.8.1 Three Position Modulation (3PM) code 127
5.8.2 Constructions 3, 4, and 5 128
5.8.3 Generalized construction 131
5.8.4 Results and comparisons 132

5.9 Appendix: Generating functions 134

6 Enumerative coding 137
6.1 Introduction . 137
6.2 Basics of enumeration . 138
6.3 Enumeration of (dklr) sequences 141

6.3.1 Enumeration using floating-point arithmetic 144

www.manaraa.com

CONTENTS xi

6.3.2 Effects of floating point arithmetic 145
6.3.3 Very long block codes 147
6.3.4 Application to (k)-constrained sequences 150

6.4 Error propagation . 152
6.5 Alternatives to standard codes 153

6.5.1 Burst error correction 155
6.6 Appendix: Asymptotics . 157

7 Sliding-Block Codes 159
7.1 Introduction . 159
7.2 Description of a sliding-block decoder 160
7.3 Variable-length (VL) codes 162

7.3.1 Synchronous variable-length RLL codes 164
7.3.2 Examples of synchronous VL codes 164

7.4 Look-ahead encoding technique 170
7.4.1 Rate 2/3, (1,7) code 171

7.5 Sliding-block algorithm . 172
7.5.1 Higher-order edge graphs 174
7.5.2 State splitting . 176

7.6 Baldwin codes . 181
7.6.1 Encoder description 181

7.7 Immink codes . 183
7.7.1 Encoder description, d=1 case 183
7.7.2 Encoder description, d=2 case 187
7.7.3 Very efficient coding schemes 189

7.8 Discussion . 191

8 Dc-balanced Codes 195
8.1 Introduction . 195
8.2 Preliminaries . 198

8.2.1 Capacity of dc-constrained sequences 200
8.2.2 Spectra of maxentropic sequences 203

8.3 Performance assessment . 208
8.4 Simple coding schemes . 213

8.4.1 Zero-disparity coding schemes 213
8.4.2 Low-disparity coding schemes 215
8.4.3 Polarity switch method 218

8.5 Computation of the spectrum 219
8.6 Performance appraisal . 225

8.6.1 Efficiency of simple codes 229
8.7 High rate dc-balanced codes 231
8.8 Dc-free code with odd codeword length 233

8.8.1 Alternative definition of RDS. 234

www.manaraa.com

xii CONTENTS

8.9 Balancing of codewords . 236
8.10 Appendix . 239

8.10.1 Computation of the sum variance 239
8.10.2 Computation of the correlation 240

9 Higher-Order Spectral Zeros 243
9.1 Introduction . 243
9.2 Preliminaries . 244
9.3 Enumeration of sequences 245
9.4 Coding with zero-disparity codewords 247

9.4.1 Spectra of zero-disparity codewords 249
9.5 State-dependent encoding 251
9.6 Higher-order dc-constrained codes 253

10 Guided Scrambling 257
10.1 Introduction . 257
10.2 Guided scrambling basics . 259

10.2.1 Guided scrambling 260
10.3 Analysis of multi-mode dc-free codes 263

10.3.1 The random drawing model 264
10.3.2 Transition probabilities of the finite-state machine . . 264
10.3.3 Computational results 266
10.3.4 Alternative metrics 266

10.4 Evaluation using Hadamard Transform 269
10.5 Comparison with alternative methods 270
10.6 Weakly constrained codes 272

10.6.1 Weak (0, k) codes . 273

11 Dc-free RLL Codes 277
11.1 Introduction . 277
11.2 Capacity of DCRLL codes 277
11.3 Spectrum of maxentropic DCRLL sequences 280
11.4 Examples of DCRLL codes 284

11.4.1 ACH-algorithm-based DCRLL codes 285
11.4.2 Dc-control: data level versus channel level 286
11.4.3 Codes with parity preserving word assignment 288
11.4.4 Zero Modulation . 291
11.4.5 Miller-Miller code . 292

11.5 EFM revisited . 293
11.5.1 EFM . 293
11.5.2 EFMPlus . 296
11.5.3 Alternatives to EFM schemes 300
11.5.4 Performance of EFM-like coding schemes 302

www.manaraa.com

CONTENTS xiii

12 Further Reading 305
12.1 Selected literature . 306

13 Author’s Biography 309

Bibliography 311

Index 341

www.manaraa.com

xiv CONTENTS

www.manaraa.com

Chapter 1

Introduction

Given the more or less constant demand for increased storage capacity and
reduced access time, it is not surprising that interest in coding techniques
for mass storage systems, such as optical and magnetic recording products,
has continued unabated ever since the day when the first mechanical com-
puter memories were introduced. Naturally, technological advances such as
improved materials, heads, mechanics, and so on have greatly increased the
storage capacity, but state-of-the-art storage densities are also a function of
improvements in channel coding, the topic addressed in this text.

To understand how digital data is stored and retrieved from a magnetic
medium, we need to review a few (very) basic facts. The magnetic material
contained on a magnetic disk or tape can be thought of as being made up
of a collection of discrete magnetic particles or domains which can be mag-
netized by a write head in one of two directions. In present systems, digital
information is stored along paths in this magnetic media called tracks. In
its simplest form we store binary digits on a track by magnetizing these
particles or domains in one of two directions. Two (equivalent) conventions
have been used to map the stored binary digits to the magnetization along
a track. In one convention, called NRZ, one direction of magnetization
corresponds to a stored ’1’ and the other direction of magnetization corre-
sponds to a stored ’0’. In the other convention, called NRZI, a reversal of
the direction of magnetization represents a stored ’1’ and a nonreversal of
magnetization represents a stored ’0’.

In magnetic recording, the stored binary digits usually are referred to
as channel bits. In all magnetic storage systems used today, either the
magnetic media or the head (or heads) used to write and/or read the data
move with respect to each other. If this relative velocity is constant, the
constant duration of the bit (in seconds) can be transformed to a constant
length of the bit along a track.

As has been observed by many authors, the storing and retrieving of
digital information from a storage system is a special case of a digital com-

1

www.manaraa.com

2 CHAPTER 1. INTRODUCTION

munications channel. Thus, as information theory provides the theoretical
underpinnings for digital communications, this theory applies equally well
to digital storage systems. A convenient definition of channel coding is: The
technique of realizing high transmission reliability despite shortcomings of
the channel, while making efficient use of the channel capacity. The reli-
ability is commonly expressed in terms of the probability of receiving the
wrong information, that is, information that differs from what was origi-
nally transmitted or stored. To a casual observer it may appear that coding
systems are a recent phenomenon. This is true in a purely commercial con-
text, but research into coding techniques has its roots in information theory
which goes back to the pioneering work of Shannon [296]. Shannon offered
the world the so-called ’fundamental theorem of information theory’, which
states that it is possible to transmit information through a noisy channel at
any speed less than the channel capacity with an arbitrarily small probability
of error. This raises the immediate question: How can the promised the-
oretical land of arbitrarily small error probability be reached in practice?
There is no answer to that question at this moment. There is, however, a
de facto consensus as to which code structure is ’good’. A code is a set of
rules for assigning, to a source (or input) sequence, another sequence that
is recorded. The aim of this transformation is to improve the reliability
and/or efficiency of the recording channel.

In recorder systems, channel encoding is commonly accomplished in two
successive steps: (a) error-correction code and (b) recording (or modulation)
code. The various coding steps are visualized in Figure 1.1 which shows a
block diagram of a possible data storage system of this kind. The decoder,
the spitting image, or more accurately the ’egami gnittips’, of the encoder,
reconstitutes, by using the redundancy present in the retrieved signal, the
input sequences as accurately as possible. Error-correction control is real-
ized by systematically adding extra symbols to the conveyed message. These
extra symbols make it possible for the receiver to detect and/or correct some
of the errors that may occur in the received message. The main problem
is to achieve the required protection against the inevitable transmission er-
rors without paying too high a price in adding extra symbols. There are
many different families of error-correcting codes. Of major importance for
data storage applications is the family of Reed-Solomon codes [340]. The
reason for their pre-eminence in mass storage systems is that they can com-
bat combinations of random as well as burst errors. Error-correction or
error-detection coding techniques are amply dealt with in many excellent
textbooks and are not considered in this book.

The arrangement called channel or recording code, sometimes referred
to as modulation code or constrained code, on which this book will concen-
trate, accepts the bit stream (extra bits added by the error-correction system
included) as its input and converts the stream to a waveform called con-

www.manaraa.com

3

strained sequence, which is suitable for the specific recorder requirements.
In transmission over electrical or fiber cables, the technique related to the
recording code is termed line coding. The term recording code encompasses
a large variety of codes, and it is therefore difficult to provide an exact and
general definition of such a code. In particular, the seeming lack of dis-
tinction between error control coding and recording/line coding may easily
lead to confusion in the reader’s mind. More confusion is added as there
are recording codes with error correcting capabilities, or, if you wish, error
correcting codes that satisfy certain channel constraints.

source data

source data
parity
check

ECC encoder

output sequence
to channel

recording code

Figure 1.1: Block diagram of the two coding steps in a data storage
system. The source data are translated in two successive steps: (a) error-
correction code (ECC) and (b) recording (or channel) code. The ECC
encoder generates parity check symbols. The source data plus parity
check symbols are translated into a constrained output sequence by the
recording code. The output sequence is stored on the storage medium in
the form of binary physical quantities, for example pits and lands, or posi-
tive and negative magnetizations. In this context, the method of putting a
second code on top of the first one is usually called a concatenated scheme.

An encoder has the task of translating (binary) user data into a sequence
that complies with the given channel constraints. On the average, m binary
user symbols are translated into n binary channel symbols. Any restriction
on the repertoire of symbol sequences diminishes the quantity of informa-
tion, in bits, to something less than the number of binary digits actually
utilized. A measure of the efficiency implied by a particular code is given
by the quotient R = m/n, where R is called the information rate or, in
short, rate of the code. The quantity 1−R is called the redundancy of the
code. Since only a limited repertoire of sequences is used, the rate of a code

www.manaraa.com

4 CHAPTER 1. INTRODUCTION

that transforms input data into a constrained sequence is by necessity less
than unity. The maximum rate given the channel input constraints is often
called the Shannon capacity or, in short, capacity of the input-constrained
noiseless channel. A good code embodiment realizes a code rate that is
close to the Shannon capacity of the constrained sequences, uses a simple
implementation, and avoids the propagation of errors at the decoding pro-
cess, or, more realistically, one with a compromise among these competing
attributes.

Notably spectral shaping and runlength-limited (RLL) codes have found
widespread usage in consumer-type mass storage systems such as Compact
Disc, DAT, DVD, and so on [150]. Table 1.1 gives a survey of recording
codes currently in use by consumer-type mass data storage products.

Table 1.1: Survey of recording codes and their application area

Device Code Type Ref.
Compact Disc EFM RLL, dc-free [130]
MiniDisc EFM RLL, dc-free [354]
DVD EFMPlus RLL, dc-free [151]
BluRay (1,7)PP RLL, dc-free [260]
R-DAT 8-10 dc-free [259]
floppy and hard disk (2,7) or (1,7) RLL [96]
DCC ETM dc-free [142]
Scoopman LDM-2 RLL, dc-free [133]
DVC 24 → 25 dc-free, pilot tones [180]

There are various reasons for the application of a recording code. For exam-
ple, long sequences of like symbols can easily foil the receiver’s electronics
such as the timing recovery or the adaptive equalization whose design usu-
ally rests on the assumption that the signals are stationary. It seems quite
reasonable to try to protect against vexatious waveforms by removing them
from the input repertoire. A coding step in which particular sequences are
removed to minimize the effect of worst-case patterns is a good example of
a recording/line code. The special attributes that the recorded sequences
should have to render it compatible with the physical characteristics of the
available transmission channel are called channel constraints. The chan-
nel constraints considered here are deterministic by nature and are always
in force. The above case is a typical example of a channel constraint de-
scribed in time-domain terms: sequences containing runs of like symbols
that are too long are forbidden. Channel constraints can also be described
in frequency-domain terms. Common magnetic recorders do not respond to
low-frequency signals so that in order to minimize distortion of the retrieved

www.manaraa.com

5

data, one usually eliminates low-frequency components in the recorded data
by a coding step.

The two previous examples of recording codes are used to reduce the like-
lihood of errors by avoiding those pathological sequences which are a priori
known to be most vulnerable to channel impairment and thus prone to error.
Scrambling, applied, for example, in the D1 digital video tape recorder [115],
is an alternative method often advocated to eliminate ’worst-case’ effects in
the data. Scramblers use pseudo-random sequences to randomize the statis-
tics of the data, making them look more like a stationary sequence. There
are, however, pathological input patterns for which scramblers will fail, since
any technique that performs a one-to-one mapping between input and out-
put data and by necessity does not remove error-prone sequences, remains
vulnerable to problematic inputs. We can just hope that the probability of
occurrence of such error-prone events is reduced.

Recording codes are also used to include position information for servo
systems and timing information for clock recovery. A plethora of all kinds
of codes are found in this area. They include codes for generating pilot
tracking tones and spectral null codes. Specifically in this field, coding by
means of a recording code has proven to be a powerful and versatile tool
in the hands of the system architect. All the aforementioned coding stages
are used in a modern digital video recorder [39].

There are various ways in which digital symbols can be represented by
physical quantities. All these involve assigning a range of waveforms of
a continuously variable physical function to represent some digital sym-
bol. Most digital data storage systems currently in use are binary and
synchronous, which means that in each symbol time interval, or time slot, a
condition of, for example, pit or no pit, positive or negative magnetization,
etc., is stored. During read-out, the receiver, under the control of the re-
trieved clock, properly phased with respect to the incoming data, samples
the retrieved signal at the middle of each time slot. It is well known that a
single pulse transmitted over a bandwidth-limited system is smeared out in
time due to the convolution with the channel’s impulse response. A sample
at the center of a symbol interval is a weighted sum of amplitudes of pulses
in several adjacent intervals. This phenomenon is called intersymbol inter-
ference (ISI). If the product of symbol time interval and system bandwidth
is reduced, the ISI will become more severe. A point may eventually be
reached at which this effect becomes so severe that the receiver, even in the
absence of noise, can no longer distinguish between the symbol value and
the ISI and will start to make errors.

Manipulation of the sequence structure with the aim of minimizing the
effects of ISI, or to tailor the power spectral density to specific needs, is the
domain of the recording, or transmission, codes. We refer to such an oper-
ation as (spectral) coding of the message sequence. As a typical example,

www.manaraa.com

6 CHAPTER 1. INTRODUCTION

consider the effects of high-pass filtering or a.c. coupling. The a.c. coupling
of a channel manifests itself as ISI called baseline wander. A common tech-
nique to cancel the effects of baseline wander is to deploy a code that has
no spectral content at the low-frequency end.

According to Nyquist’s classical criteria for distortionless transmission
[265] all ISI can be eliminated prior to detection by means of a linear filter
which essentially flattens, or equalizes, the characteristics of the channel. In
practice there are difficulties in providing correct equalization at all times.
Tape surface asperities and substrate irregularities may cause variations or
fluctuations in the intimacy of head contact, which changes the response
at high frequencies much more than at low frequencies. In disc drives, the
varying radius of the tracks results in a linear density variation of about two
to one, and the thickness of the air film, which is a function of the disc-head
speed, is also subject to change. In disc(k) systems, spindle wobble and disc
warp mean that the focal plane is continuously moving and the spot quality
will vary due to the finite bandwidth of the focus servo. Optimum equal-
ization is very difficult to maintain under dynamic conditions, although an
adaptive equalizer can be used to follow the dynamic changes. An adaptive
equalizer has limited accuracy and by necessity is has to react slowly to
the variations. A recording code must therefore be designed to show a cer-
tain acceptable ruggedness against said dynamic changes of the channel’s
characteristics that an adaptive or fixed compromise equalizer cannot cope
with. This statement applies specifically to the DAT and Compact Disc,
which are meant for domestic use and where, therefore, readjustment of the
mechanical parameters is out of the question.

The physical parameters mentioned above are associated purely with
the one-dimensional communication channel approach. Designing for high
linear density (along the recording track) cannot be the sole objective. In
a system approach, both dimensions, track and linear density, should be
considered. There can be little doubt that the system approach in which
the interaction between various subsystems (servos, materials, etc.) is taken
into account holds the key to forthcoming significant advances in informa-
tion density. In magnetic recorders, signal amplitude and signal-to-noise
ratio are proportional to the track width. In this sense, linear and track
density can be traded against each other. For mechanical design simplicity,
high-performance digital tape recorders such as the DAT recorder are de-
signed to operate at relatively high linear densities but low track density.
With the use of wide tracks with high linear densities, ISI rather than (ad-
ditive) noise is frequently the limiting factor. This statement is especially
true for optical recording systems, where noise is virtually absent. Unfor-
tunately, it is extremely difficult to analyze or quantify system factors like
crosstalk from adjacent tracks, or interaction between data written on the
disc or tape with servo systems utilized to follow the tracks. Such charac-

www.manaraa.com

7

terization methods require much time and effort, as well as the skill of the
system engineer who carries out the experiments, if their results are to be
consistent. It is conventional to judge the performance of coding schemes
in terms of error probability. It should be borne in mind that this is not the
sole valid quantity for appraising the performance of a data storage system.
It seems to be appropriate to remark that any error correction and detection
is totally useless if track loss occurs either through an improper construction
of the tracking servo or because of excessive disc or tape damage.

Does this book provide an answer to the question: What code should be
employed in a specific data storage system? The short answer to this ques-
tion is that there is no one answer which is satisfactory under any general set
of circumstances. The actual process of selecting and devising a recording
code is in fact always a trade-off between various conflicting requirements
such as signal-to-noise ratio, clocking accuracy, non-linearities, and inter-
symbol interference. Other constraints, such as equipment limitations, ease
of encoding and decoding, and the desire to preserve a particular mapping
between the source and the code symbols all govern the encoding chosen.
The problem of code selection is further compounded by non-technical con-
siderations such as the patent situation or familiarity and these factors are
to some extent certainly valid. One further, and certainly not the least
relevant, factor that affects the choice of a coding scheme is its cost. Any
coding scheme is merely a part of a larger system and its cost must be in
proportion to its importance within that system.

The difficulty remains, of course, in actually defining the optimal channel
constraints and in appraising the code’s performance in any specific practical
situation. It should be borne in mind that, although our present knowledge
of the physics of the recording channel, whether optical or magnetic, is rea-
sonably detailed, there are still large areas where the channel behavior is
much more difficult to account for. Theories are bound to fall short of the
perfect explanation or prediction because the real world is far too complex
to be embraced in a single theory, and because in the real world there are
factors at work that are genuinely unpredictable. It is therefore doubtful
whether the tenets of information and communication theory can really be
of any more help in assessing channel code performance in the physical con-
text of a recording channel. However, information theory affords other tools
that can be helpful. The performance of ideal or maxentropic constrained
sequences, that is, sequences whose information content equals the channel
capacity, obviously sets a standard by which the performance of imple-
mented codes can be measured. The attributes of maxentropic constrained
sequences provide valuable criteria for assessing both the effects of specific
code parameters on the attainable performance, and the effects of impor-
tant trade-off’s which are involved in the system design. The performance
measures obtained can serve as a guide. It should be noted, however, that

www.manaraa.com

8 CHAPTER 1. INTRODUCTION

it can never substitute for experimental results or experience obtained by
experiments. Further definitive performance criteria seem to be, at least at
present and in this context, beyond the reach of mathematics and definitely
belong to the province of the design engineer. It is therefore likely that, in
spite of the attractions of the elegant mathematical formulation of informa-
tion and communication theory, more ad hoc approaches to coder/decoder
design are here to stay.

www.manaraa.com

Chapter 2

Entropy and Capacity

2.1 Introduction

In this chapter we develop tools for constructing, describing, and analyzing
the codes and code properties that appear subsequently in this book. Our
main objective in this chapter is to provide an answer to a fundamental
question that arises in the analysis of communication systems: Given an
information source, how do we quantify the amount of information that the
source is emitting?

Generally speaking, information sources are classified in two categories:
continuous and discrete. Continuous information sources emit a continuous-
amplitude, continuous-time waveform, whereas a discrete information sour-
ce conveys symbols from a finite set of letters or alphabet of symbols. In this
book we shall confine ourselves to discrete information sources. Every mes-
sage emitted by the source contains some information, but some messages
convey more information than others. In order to quantify the information
content of messages transmitted by information sources, we will study the
important notion of a measure of information, called entropy, in this chap-
ter. The material presented in this chapter is based on the pioneering and
classical work of Shannon [296], who published in 1948 a treatise on the
mathematical theory of communications.

A channel that does not permit input sequences containing any of a
certain collection of forbidden subsequences is called an input-restricted or
constrained channel. The constraints specify what is possible or allowed
and what is not. The physical limitations of, for instance, the time-base
regeneration or the adaptive equalization circuitry lead to the engineering
conclusion that troublesome sequences that may foil the receiver circuitry
have to be discarded, and that therefore not the entire population of possible
sequences can be used. To be specific, sequences are permitted that guaran-
tee runs of consecutive ’zero’ or ’one’ symbols that are neither too short nor
too long. This is an example of a channel with runlength constraints (a run-

9

www.manaraa.com

10 CHAPTER 2. ENTROPY AND CAPACITY

length is the number of times that the same symbol is repeated). Another
typical constraint may require that the difference between the numbers of
transmitted ’one’s and ’zero’s is bounded. It should be appreciated that
the channel constraints considered here are deterministic by nature and are
always in force. The basic notion is that the messages are conveyed over a
noiseless channel, that is, a channel that never makes errors. Our concern
here is to maximize the number of messages that can be sent (or stored) over
the channel in a given time (or given area) given the deterministic channel
constraints.

The main part of this book is concerned with methods how to transform,
that is encode, binary data into a series of binary data that a channel can
accept. On the average, m binary user symbols are translated into n binary
channel symbols. Obviously, since not the entire population is used, n ≥ m.
A measure of the efficiency implied by a particular code is given by the code
rate, R, where R is defined as R = m/n. The fraction of transmitted
symbols that are redundant is 1 − R. Clearly, an unconstrained channel,
that is a channel that permits any arbitrary binary sequence, has unity
rate. It is a cardinal question how many of the possible sequences have to
be excluded, or, stated alternatively, how much of a rate (loss) one needs
to suffer at most to convert arbitrary data into a sequence that satisfies the
specified channel constraints. The maximum rate feasible given determinate
constraints is often called, in honor of the founder of information theory, the
Shannon capacity, or noiseless capacity of the input-constrained channel.

We commence with a quantitative description of information content of
various discrete sources. The central concept of channel capacity is intro-
duced in Section 2.3. The references quoted may be consulted for more
details of the present topic.

2.2 Information content, Entropy

Messages produced by discrete information sources consist of sequences of
symbols. For the time being, we will assume that each symbol produced by
such a source has a fixed duration in time (later we will deal with sources
that produce symbols of different, but fixed, length). The simplest model of
an information source is probably a source that emits symbols in a statisti-
cally independent sequence, with the probabilities of occurrence of various
symbols being invariant with respect to time.

2.2.1 Entropy of memoryless sources

This section applies to sources that emit symbols in statistically indepen-
dent sequences. Such a source is usually called memoryless. We assume

www.manaraa.com

2.2. INFORMATION CONTENT, ENTROPY 11

that the symbol transmitted by the source is the result of a probabilistic
experiment. Suppose that the probabilistic experiment involves the obser-
vation of a discrete random variable denoted by X. Let X take on one
of a finite set of possible values {x1, . . . , xM} with probabilities p1, . . . , pM ,
respectively. Clearly,

M∑

i=1

pi = 1.

The outcomes of the experiments are emitted by the source, which generates
a sequence denoted by {X} = {. . . , X−1, X0, X1, . . .}. We may imagine the
symbols being produced at a uniform rate, one per unit of time, with Xt

produced at time t.
We next consider a formulation of the information content in terms of

information theory. It is not possible here to examine in detail the formal
establishment of a measure of information. Again, the references provided
at the end of this chapter may be consulted for more details of the present
topic. The fundamental notion in information theory is that of surprise or
uncertainty. Unlikely messages are assumed to carry more information than
likely ones, and vice versa. Information can be measured on the basis of
the amount of surprise, unpredictability or news value that it conveys to
the receiver. A measure of information content of an information source,
usually called uncertainty or entropy, was proposed by Shannon [296]

H(p1, . . . , pM) = −
M∑

i=1

pi log2 pi, 0 ≤ pi ≤ 1. (2.1)

The quantity entropy measures the number of bits (per unit of time) re-
quired to send the sequences {X} generated by the source. A translating
device called source code is needed to ”compress” the sources sequences
{X} into sequences {Xc}, whose symbols are produced at (at least) H(.)
bits per unit of time. The quantity entropy sets a limit to the amount of
compression. The base of the logarithm in (2.1) is arbitrary but will, of
course, affect the numerical value of the entropy H(p1, . . . , pM). When the
logarithm is taken to the base e, the information is measured in units of
nats (a shorthand notation of natural units). The 2-base is in common use.
If we employ base 2, the units of H(p1, . . . , pM) are expressed in bits, a con-
venient and easily appreciated unit of information. If M = 2, one usually
writes h(p) instead of H(p, 1− p). It follows that

h(p) = −p log2 p− (1− p) log2 (1− p), 0 ≤ p ≤ 1, (2.2)

where by definition h(0) = h(1) = 0 to make h(p) continuous in the closed
interval [0, 1]. The function h(p) is often called the binary entropy function.
Figure 2.1 shows a sketch of h(p). We notice that the information content
of a stochastic variable reaches a maximum when p = 1/2.

www.manaraa.com

12 CHAPTER 2. ENTROPY AND CAPACITY

Example 2.1 Consider the flipping of a coin. Let Pr(heads) = p and Pr(tails)

= 1−p, 0 ≤ p ≤ 1, then the entropy is given by (2.2). That h(1/2) = 1 is of course

intuitively confirmed by the fact that one requires 1 bit to represent the outcome

of the tossing of a fair coin. For example, the outcome heads is represented

by a logical ’zero’ and tails by a logical ’one’. When we have an unfair coin,

this simple representation method is not efficient. Consider an unfair coin with

Pr(heads) = 1/4. Since h(1/4) ' 0.811, on the average, only 811 bits are needed

to represent the outcomes of 1000 tossings with this unfair coin. How this is done

in an efficient fashion is not straightforward. Codes are required to ”compress”

the 1000 outcomes into a message of, on the average 811 bits. Compression codes

or source codes , although an important subject in its own right, are not further

pursued in this book. The reader is referred to, for example, the textbooks by

Blahut or Gallager [33, 108].

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

E
nt

ro
py

Figure 2.1: Entropy h(p) = −p log p− (1−p) log(1− p). The information
content of a stochastic variable reaches a maximum when p = 1/2.

We now establish two useful inequalities. Let p1, . . . , pM and q1, . . . , qM be
arbitrary positive numbers with

∑
pi =

∑
qi = 1. Then

−
M∑

i=1

pi log2 pi ≤ −
M∑

i=1

pi log2 qi. (2.3)

Equality holds if and only if all pi = qi. This inequality is called the Gibbs’
inequality. The proof is based on the observation loge x ≤ x−1, x > 0, with

www.manaraa.com

2.2. INFORMATION CONTENT, ENTROPY 13

equality if and only if x = 1. Thus loge (qi/pi) ≤ qi/pi − 1, or log2 (qi/pi) ≤
(qi/pi − 1) log2 e. Multiplying this inequality by pi and summing over i we
obtain

M∑

i=1

pi log2
qi
pi

≤ log2 e
M∑

i=1

(qi − pi) = 0.

Thus

−
M∑

i=1

pi log2 pi ≤ −
M∑

i=1

pi log2 qi,

which proves the Gibbs’ inequality.
It is important to know the conditions on a probability distribution that

lead to maximum entropy. (Clearly, the minimum value of the entropy
H(p1, . . . , pM) = 0 is taken if e.g. p1 = 1 and all other pi = 0.) The
application of Gibbs’ inequality (2.3) with all qi = 1/M yields

−
M∑

i=1

pi log2 pi ≤ −
M∑

i=1

pi log2
1

M
= log2 M

M∑

i=1

pi = log2 M

with equality if and only if pi = qi = 1/M for all i. Therefore, after plugging
this result into (2.1) we obtain

H(p1, . . . , pM) ≤ log2 M. (2.4)

Thus the maximum entropy of a memoryless source is log2 M , and this is
achieved when all the pj are equal. Any other distribution than the uniform
distribution will lead to a smaller entropy of the message.

2.2.2 Markov chains

In the previous section we introduced the notion of entropy in a conceptu-
ally simple situation: it was assumed that the symbols are independent and
occur with fixed probabilities. That is, the occurrence of a specific symbol
at a certain instant does not alter the probability of occurrences of future
symbols. We need to extend the concept of entropy for more complicated
structures, where symbols are not chosen independently but their proba-
bilities of occurring depend on preceding symbols. It is to be emphasized
that nearly all practical sources emit sequences of symbols that are statisti-
cally dependent. Sequences formed by the English language are an excellent
example. Occurrence of the letter Q implies that the letter to follow is prob-
ably a U. Regardless of the form of the statistical dependence, or structure,
among the successive source outputs, the effect is that the amount of infor-
mation coming out of such a source is smaller than from a source emitting
the same set of characters in independent sequences. The development of a
model for sources with memory is the focus of the ensuing discussion.

www.manaraa.com

14 CHAPTER 2. ENTROPY AND CAPACITY

In probability theory the notation

Pr(A|B)

means the probability of occurrence of event A given that (|) event B has
occurred. Many of the structures that will be encountered in the subsequent
chapters can usefully be modelled in terms of a Markov chain. An N -state
Markov chain is defined as a discrete random process of the form

{. . . , Z−2, Z−1, Z0, Z1, . . .},

where the variables Zt are dependent discrete random variables taking values
in the state alphabet Σ = {σ1, . . . , σN}, and the dependence satisfies the
Markov condition

Pr(Zt = σit|Zt−1 = σit−1 , Zt−2 = σit−2 , . . .) = Pr(Zt = σit |Zt−1 = σit−1).

In words, the variable Zt is independent of past samples Zt−2, Zt−3, . . . if the
value of Zt−1 is known. A (homogeneous) Markov chain can be described
by a transition probability matrix Q with elements

qij = Pr(Zt = σj|Zt−1 = σi), 1 ≤ i, j ≤ N. (2.5)

The transition probability matrix Q is a stochastic matrix, that is, its entries
are non-negative, and the entries of each row sum to one. Any stochastic
matrix constitutes a valid transition probability matrix.

Imagine the process starts at time t = 1 by choosing an initial state in
accordance with a specified probability distribution. If we are in state σi

at time t = 1, then the process moves at t = 2 to a possibly new state, the
quantity qij is the probability that the process will move to state σj at time
t = 2. If we are in state σj at instant t = 2, we move to σk at instant t = 3
with probability qjk. This procedure is repeated ad infinitum. A sequence
of states thus generated is often called a path.

The state-transition diagram of a Markov chain, portrayed in Figure 2.2
represents a Markov chain as a directed graph or digraph, where the states
are embodied by the nodes or vertices of the graph. The transition between
states is represented by a directed line, an edge, from the initial to the final
state. The transition probabilities qij corresponding to various transitions
are shown marked along the lines of the graph. Clearly the transition matrix
is

Q =

0 0 1
1/2 1/3 1/6
1/2 1/2 0

 .

Another useful representation of a Markov chain is provided by a trellis or
lattice diagram (see Figure 2.2). This is a state diagram augmented by a

www.manaraa.com

2.2. INFORMATION CONTENT, ENTROPY 15

time axis so that it provides for easy visualization of how the states change
with time.

1

2

3

1/2

1

1/2

1/2

1/3

1/6

Time

1

2

3
1

1/6

1/2
1/2

1/3

1/2

Figure 2.2: Alternative representations of a three-state Markov chain.
(upper diagram) state-transition diagram, (lower diagram) trellis diagram
for the same chain. Permissible transitions from one state to the other
are depicted by lines.

There are many types of Markov chains, but here we restrict our attention
to chains that are ergodic or regular and irreducible [199]. A source is irre-
ducible if from any state the chain can eventually reach any other state (not
necessarily in a single step). A state σi has period d if, given that we are in
σi at instant t = 0, we can only reach σi when t is a multiple of d. We call σi

periodic if it has some period > 1. If the Markov chain is irreducible, either
all states are periodic or none are. Regularity means that the Markov chain
is non-periodic. A source is said to be ergodic if it is irreducible and regular.
In the structures that will be encountered, all these conditions hold.

We shall now take a closer look at the dynamics of a Markov chain. To

www.manaraa.com

16 CHAPTER 2. ENTROPY AND CAPACITY

that end, let w
(t)
j ≡ Pr(Zt = σj) represent the probability of being in state

σj at time t. Clearly,
N∑

j=1

w
(t)
j = 1. (2.6)

The probability of being in state σj at time t may be expressed in the state
probabilities at instant t− 1as follows:

w
(t)
j = w

(t−1)
1 q1j + w

(t−1)
2 q2j + · · ·+ w

(t−1)
N qNj. (2.7)

The previous equation suggests the use of matrices. If we introduce the
state distribution vector

w(t) = (w
(t)
1 , . . . , w

(t)
N),

then the previous equation can succinctly be expressed in an elegant ma-
trix/vector notation, thus

w(t) = w(t−1)Q. (2.8)

By iteration we obtain

w(t) = w(1)Qt−1. (2.9)

In words, the state distribution vector at time t is the product of the state
distribution vector at time t = 1, and the (t− 1)th power of the transition
matrix. It is easy to see that Qt−1 is also a stochastic matrix. Eq. (2.9)
is equivalent to the assertion that the n-step transition matrix is the nth
power of the single step transition matrix Q. We note also that Q0 = I is
the ordinary identity matrix.

We shall concentrate now on the limiting behavior of the state distri-
bution vector as t → ∞. In many cases of practical interest there is only
one such limiting distribution vector, In the long run the state distri-
bution vector converges to the equilibrium distribution vector, denoted by
π = (π1, . . . , πN). In the long run the state distribution vector converges
from any valid initial state probability vector w(1), so

π = lim
t→∞w(1)Qt−1. (2.10)

The number πi is called the steady state probability or stationary state prob-
ability of state σi. If the source is ergodic there is exactly one π.

The equilibrium distribution vector can be obtained by solving the sys-
tem of linear equations in the N unknowns π1, . . . , πN :

πQ = π. (2.11)

www.manaraa.com

2.2. INFORMATION CONTENT, ENTROPY 17

Only N−1 of these N equations are independent, so we solve the top N−1
along with the normalizing condition

N∑

i=1

πi = 1.

The proof of (2.11) is elementary: we note that if πQ = π, then

πQt = πQQt−1 = πQt−1 = . . . = π.

Decomposition of the initial state vector w(1) in terms of the eigenvectors
of Q can be convenient to demonstrate the process of convergence. The
matrix Q has N eigenvalues {λ1, . . . , λN}, that can be found by solving the
characteristic equation

det[Q− λI] = 0, (2.12)

where I is the identity matrix, and N (left) eigenvectors {u1, . . . ,uN} each
of which is a solution of the system

uiQ = λiui, i = 1, . . . , N. (2.13)

Provided that λi, i = 1, . . . , N , are distinct, there are N independent eigen-
vectors, and the eigenvectors ui, i = 1, . . . , N , constitute a basis. The initial
state vector may be written as

w(1) =
N∑

i=1

aiui. (2.14)

With (2.9) we find the state distribution vector w(t) at instant t:

w(t) = w(1)Q(t−1) =
N∑

i=1

aiλ
(t−1)
i ui. (2.15)

If the eigenvalues are distinct, the {λi} can be ordered, such that

|λ1| > |λ2| > |λ3| > etc.

Combination of (2.11) and (2.13) reveals that π is an eigenvector with unity
eigenvalue, thus λ1 = 1. We then have

w(t) = π +
N∑

i=2

aiλ
(t−1)
i ui (2.16)

and convergence to π is assured since |λi| < 1, i 6= 1.

www.manaraa.com

18 CHAPTER 2. ENTROPY AND CAPACITY

2.2.3 Entropy of Markov information sources

We are now in the position to describe a Markov information source. Given
a finite Markov chain {Zt} and a function ζ whose domain is the set of
states of the chain and whose range is a finite set Γ, the source alphabet,
then the sequence {Xt}, where Xt = ζ(Zt), is said to be the output of a
Markov information source corresponding to the chain {Zt} and the func-
tion ζ. In general, the number of states can be larger than the cardinality of
the source alphabet, which means that one output symbol may correspond
to more than one state. The essential feature of the Markov information
source is that it provides for dependence between successive symbols, which
introduces redundancy in the message sequence. Each symbol conveys less
information than it is capable of conveying since it is to some extent pre-
dictable from the preceding symbol.

In the foregoing description of an information source we assumed that
the symbol emitted is solely a function of the state that is entered. This type
of description is usually called a Moore-type Markov source. In a different
description, called the Mealy-type Markov source, the symbols emitted are
a function of the Markov chain Xt = ζ̂(Zt, Zt+1). In other words, a Mealy-
type Markov source is obtained by labeling the edges of the directed graph
that represents the Markov chain. Mealy- and Moore-type descriptions are
equivalent. Let a Mealy-type machine be given. By defining a Markov infor-
mation source with state set composed of triples {σi, σj, ζ̂(σi, σj)} and label

ζ̂(σi, σj) on the state {σi, σj, ζ̂(σi, σj)}, we obtain a Moore-type Markov
source. The Moore-type source obtained by the above operation is called
the edge graph of the Mealy-type source.

A typical example of a Mealy-type information source and its Moore-
type equivalent are shown in Figure 2.3. In Figure 2.3, the symbol sequence
’addcba’ can be generated by following a path in the direction of the arrows,
while it can easily be seen that sequences with the subsequences ’aa’ or ’cc’
cannot be generated. The set of all finite sequences generated by a Markov
source will be called a constrained system or constraint. We say that the
Markov source represents the constrained system. The idea of a Markov
source makes it possible to represent certain types of structure in streams
of data.

We next examine the information content, or entropy, of a sequence
emitted by a Markov source. The entropy of a Markov information source
is hard to compute in most cases. For a certain class of Markov information
sources, termed unifilar Markov information source, the computation may
be greatly simplified. The word unifilar refers to the following property [7].

Let a Moore-type Markov information source with a set of states Σ =
{σ1, . . . , σN}, output alphabet Γ, and associated output function ζ(Zt) be
given. For each state σk ∈ Σ, let σk1 , σk2 , . . . , σknk

be the nk states that can

www.manaraa.com

2.2. INFORMATION CONTENT, ENTROPY 19

be reached in one step from σk, that is, the states σj such that qkj > 0. We
say σj is a successor of σk if qkj > 0. The source is said to be unifilar if for
each state σk the labels ζ(σk1), . . . , ζ(σknk

) are distinct. In other words, each
successor state of σk must be associated with a distinct symbol. Provided
this condition is met and the initial state of the Markov information source
is known, the sequence of emitted symbols determines the sequence of states
followed by the chain, and a simple formula is available for the entropy of
the emitted X-process. Similarly, a Mealy-type Markov source is said to be
unifilar if for each state σk, k ∈ {1, . . . ,M} the labels tagged to the outgoing
edges are distinct.

a

b

c

d

a b

c d

(a) (b)

Figure 2.3: (a) Example of a Mealy-type two-state Markov information
source, and (b) its four-state Moore-type counterpart.

Given a unifilar Markov source, as above, let σk1 , . . . , σknk
be the successors

of σk, then it is quite natural to define the uncertainty of state σk as Hk =
H(qk,k1 , . . . , qk,knk

), with the entropy function, H(.), as defined in (2.1).
Shannon [296] defined the entropy of the unifilar Markov source as the
average of the state entropies Hk, 1 ≤ k ≤ N , weighed in accordance with
the steady-state probability of being in a state in question, or

H{X} =
N∑

k=1

πkHk. (2.17)

Note that we use the notation H{X} to express the fact that we are con-
sidering the entropy of sequences {X} and not the function H(.). The next
numerical example may serve to illustrate the theory.

Example 2.2 Consider the three-state Markov chain depicted in Figure 2.2,
page 15. From the diagram we may read the transition probability matrix

Q =

0 0 1
1/2 1/3 1/6
1/2 1/2 0

 .

www.manaraa.com

20 CHAPTER 2. ENTROPY AND CAPACITY

What is the average probability of being in one of the three states? We find,
using (2.11) the following system of linear equations that govern the steady-state
probabilities:

1

2
π2 +

1

2
π3 = π1

1

3
π2 +

1

2
π3 = π2

π1 +
1

6
π2 = π3,

from which we obtain π3 =
4
3π2 and π1 =

7
6π2. Since π1 + π2 + π3 = 1 we have

π1 =
1

3
, π2 =

2

7
, π3 =

8

21
.

The Markov chain depicted in Figure 2.2 is converted into a Markov source by
assuming that it emits the letter i, 1 ≤ 3, when it visits state σi. It can be
verified that the Markov so obtained is indeed unifilar. The entropy of the Markov
information source is found with (2.1) and (2.17)

H{X} =
1

3
H(1) +

2

7
H(

1

2
,
1

3
,
1

6
) +

8

21
H(

1

2
,
1

2
) ' 0.798.

In the next section we consider a problem which is central to the field of input-

constrained channels. We focus on methods to compute the maximum amount of

information that can be sent over an input-constrained channel per unit of time.

2.3 Channel capacity of constrained chan-

nels

In an input-constrained, or, in short, constrained channel, given (sub)se-
quences are not admissible. A very simple constrained channel is for exam-
ple where sequences having two consecutive ’one’s are forbidden.

Shannon [296] defined the capacity C of a constrained channel by

C = lim
m→∞

1

m
log2 N(m), (2.18)

where N(m) denotes the number of admissible signals of length m. The
capacity C is a quantity that upper bounds the rate of any coding scheme
that translates arbitrary data into sequences with the given constraints in
force. The problem of calculation of the capacity for constrained channels
is in essence a combinatorial problem, that is, of finding the number of
admissible sequences N(m) for large values of m. The following example
will show how the counting of sequences can be done when the constraint
is relatively simple.

www.manaraa.com

2.3. CHANNEL CAPACITY OF CONSTRAINED CHANNELS 21

Example 2.3 Define a channel that is allowed to transmit the two words ’0’
and ’10’. There is only one admissible sequence of unity length, namely ’0’. There
are two sequences of length two, namely ’00’ and ’10’. There are three sequences,
’000’, ’010’, and ’100’, of length three. Thus N(1) = 1, N(2) = 2, and N(3) = 3.
It is not too difficult to verify that the general expression for N(m), m > 2, is
given by the recurrence expression

N(m) = N(m− 1) +N(m− 2).

We can write down the following explicit expression for N(m) (see Chapter 4):

N(m) =
1√
5

(
1 +

√
5

2

)m+1

− 1√
5

(
1−√

5

2

)m+1

, m ≥ 0.

For large values of the sequence length m we can approximate N(m) by

N(m) ≈ 1√
5

(
1 +

√
5

2

)m+1

,

so that after invoking definition (2.18) we find the capacity C

C = lim
m→∞

log2 N(m)

m
= log2

1 +
√
5

2
' 0.694.

When the constraints are more complicated than in the above trivial exam-
ple, we have to resort to a larger arsenal of mathematical tools. We start,
since virtually all channel constraints can be modelled as such, with the
computation of the capacity of Markov information sources.

2.3.1 Capacity of Markov information sources

In the previous sections we developed a measure of information content of an
information source that can be represented by a finite Markov model. As
discussed, the measure of information content, entropy, can be expressed
in terms of the limiting state-transition probabilities and the conditional
entropy of the states. In this section we address a problem that provides
the key to answer many questions that will emerge in the chapters to follow.
Given a unifilar N -state Markov source with states {σ1, . . . , σN} whose
transition probability matrix is irrelevant, we define the connection matrix
D = {dij} of the source as follows. For an N -state source, the connection
(or adjacency) matrix D is defined by dij = nij where nij is the number
of edges going from state i to state j. In other word, D is the connection
matrix of the directed graph underlying the Markov source.

For a given connection matrix, we wish to choose the transition proba-
bilities in such a way that the entropy

H{X} =
N∑

k=1

pkHk

www.manaraa.com

22 CHAPTER 2. ENTROPY AND CAPACITY

is maximized. A Markov source that has the above transition probabilities is
called maxentropic, and sequences generated by such a maxentropic unifilar
source are called maxentropic sequences. The study of the statistical prop-
erties, such as spectra, provides useful tools for assessing the performance
of constrained codes.

The maximum entropy of a unifilar Markov information source, given
its connection matrix, is given by [296]

C = maxH{X} = log2 λmax, (2.19)

where λmax is the largest eigenvalue of the connection matrix D. The exis-
tence of a positive eigenvalue and corresponding eigenvector with positive
elements is guaranteed by the Perron-Frobenius theorems [325]. Essentially,
there are two approaches to prove the preceding equation. One approach,
provided by Shannon [296] is a straightforward routine, using Lagrange mul-
tipliers, of finding the extreme value of a function of several independent
variables. The second proof of (2.19) to be followed here, is established by
enumerating the number of distinct sequences that a Markov source can
generate.

As it is assumed that the Markov source is unifilar, we need to compute
the number of paths that lead from one state to another (or the same) state.
Matrix operations help us to count the number of paths. The following
theorem is very useful.

Theorem 2.1 If D is the N × N one-step connection matrix of a given
digraph, then the (i, j)-th entry of Dm equals the number of paths of length
m that lead from state σi to state σj, 1 ≤ i, j ≤ N .

Proof: Let [D]mij denote the (i, j)-th entry of Dm. The number of paths of
length m that lead from state σi to state σj equals the number of paths of
length m − 1 from state σi to state σh times the number of path of unity
length from σh to σj. This number is

[D]m−1
ih [D]hj.

Then, by induction, the number of paths of length m from σi to σj equals

N∑

h=1

[D]m−1
ih [D]hj = [D]mij ,

which concludes the proof.

For large sequence length m we may conveniently approximate the number
of sequences, [D]mij , by

[D]mij ' aijλ
m
max, (2.20)

www.manaraa.com

2.3. CHANNEL CAPACITY OF CONSTRAINED CHANNELS 23

where aij is a constant, and λmax is the largest real eigenvalue of the matrix
D [109]. In other words, λmax is the largest real root of the determinant
equation

det[D − zI] = 0. (2.21)

Equation (2.20) states that, for large enough m, the number of distinct
sequences grows exponentially with the sequence length m. The growth
factor is λmax. This is not to say that [D]mij is accurately determined by the
exponential term when m is small. We have

1

m
log2 [D]mij ' 1

m
(log2 aij +m log2 λmax).

The maximum entropy of the noiseless channel may be evaluated by invok-
ing (2.18) or

C = lim
m→∞

1

m
log2 [D]mij = log2 λmax,

which concludes the proof of (2.19).

Computation of the maxentropic transition probabilities

The computation of the transition probabilities qij associated with the max-
imum entropy of the source is quite relevant for our future purposes. It al-
lows us to compute, for example, the spectral properties of maxentropic
sequences using the theory developed in the next chapter. The transi-
tion probabilities can be found with the following reasoning. Let p =
(p1, . . . , pN)

T denote the eigenvector associated with the eigenvalue λmax,
or

Dp = λmaxp. (2.22)

The state-transition probabilities that maximize the entropy are

qij = λ−1
maxdij

pj
pi
. (2.23)

To prove (2.23) is a matter of substitution. According to the Perron-
Frobenius theorems [325] the components of the eigenvector p are positive,
and thus qij ≥ 0, 1 ≤ i, j ≤ N . Since p = (p1, . . . , pN)

T is an eigenvector
for λmax, we conclude

N∑

j=1

qij = 1,

and hence the matrix Q is indeed stochastic.
In the following paragraph we will demonstrate that the transition prob-

abilities given by (2.23) are indeed maximizing the entropy. The entropy of
a Markov information source is, according to definition (2.17)

H{X} =
N∑

k=1

πkHk,

www.manaraa.com

24 CHAPTER 2. ENTROPY AND CAPACITY

where Hk is the uncertainty of state σk and (π1, . . . , πN) is the steady-state
distribution. Thus,

H{X} = −
N∑

i,j=1

πiqij log2 qij =
N∑

i,j=1

πiqij(log2 λmax + log2 pi − log2 pj).

Since ∑

i,j

πiqij log2 pi =
∑

i

πi log2 pi

and ∑

i,j

πiqij log2 pj =
∑

j

log2 pj
∑

i

πiqij =
∑

j

πj log2 pj,

we obtain

H{X} = −
N∑

i,j=1

πiqij log2 qij =
∑

i,j

πiqij log2 λmax = log2 λmax.

This demonstrates that the transition probabilities given by (2.23) are in-
deed maximizing the entropy.

Example 2.4 We revert to the three-state unifilar Markov chain discussed in
Example 2.2. The adjacency matrix, D, is

D =

0 0 1
1 1 1
1 1 0

 .

The characteristic equation is

det[D − zI] = −z(z2 − z − 2)

= −z(z − 2)(z + 1) = 0,

from which we conclude that the largest root is λmax = 2, and the capacity is
C = log2 λmax = 1. The eigenvector associated with the largest eigenvalue is
p = (1, 3, 2)T . The transition probabilities that maximize the entropy of the
Markov information source are found with (2.23)

Q =

0 0 1
1
6

1
2

1
3

1
4

3
4 0

 .

2.3.2 Sources with variable-length symbols

A basic assumption made in the previous sections is that all transmitted
symbols are of unity duration. Our endeavor in this section is to extend the
results on channels whose symbols are of unity duration to channels whose
symbols do not all have the same duration. In particular, we shall consider

www.manaraa.com

2.3. CHANNEL CAPACITY OF CONSTRAINED CHANNELS 25

sequences that are composed of elementary symbols, called phrases, selected
from a finite set {x1, . . . , xM}. Each of the symbols x1, . . . , xM is assumed
to have a certain duration (or length) t1, . . . , tM that are integer multiples
of the unit of time.

If the source is memoryless, and the probability that phrase xi is sent
equals pi then the entropy H(p1, . . . , pM) is given by [296]

H(p1, . . . , pM) = −
∑M

i=1 pi log2 pi∑M
i=1 tipi

, 0 ≤ pi ≤ 1. (2.24)

Similar relations can be written down for sources with memory. The ca-
pacity computation of a source that can be modelled with variable length
symbols was also addressed by Shannon. Below we will extend the capacity
computations of Markov sources generating variable length phrases.

We examine again an N -state Markov information source. From any
state, phrases can emerge of certain, given, lengths. Let Sij denote the set
of the lengths of the phrases that emanate from state i and are allowed to
terminate in state j. Define the N ×N connection matrix D(z) by

dij(z) =
∑

t∈Sij

z−t, 1 ≤ i, j ≤ N. (2.25)

By methods similar to those used in deriving (2.21) it was shown by Shannon
that the capacity of the above Markov source equals the base-2 logarithm
of the largest real root of the characteristic equation

det[D(z)− I] = 0. (2.26)

Equation (2.26) reduces to (2.21) if all symbols are of unity duration.

If the phrases are emitted independently, then (2.25) and (2.26) reduce to
the characteristic equation

P (z) = z−t1 + · · ·+ z−tM = 1. (2.27)

Alternatively, the above result can be obtained by maximizing (2.24) using
Lagrange multipliers under the condition that

∑
pi = 1. From (2.27) it is

clear that P (z) is a monotonic decreasing function with

P (0) = ∞ , P (∞) = 0.

Therefore, the equation P (z) = 1 has exactly one positive root. It is in-
structive at this point to study a simple case.

Example 2.5 Consider first a sequence composed of symbols of duration two,
three, and four time units, respectively, which can be transmitted independently.

www.manaraa.com

26 CHAPTER 2. ENTROPY AND CAPACITY

This simple source is displayed in Figure 2.4. Then, according to (2.27), the
characteristic equation is

z−2 + z−3 + z−4 = 1,

or

z4 − z2 − z − 1 = 0.

After some computation, we find that the base-2 logarithm of the largest real

root of this equation is 0.5515, which is the capacity of the channel.

2

3

4

Figure 2.4: Simple source that transmits symbols of duration two, three,
and four time units.

In the next example we assume the same set of phrases, but now we apply
the extra proviso that the phrases are not emitted independently.

Example 2.6 As in the previous example, sequences are composed of phrases
of length two, three, and four time units. A phrase of length two is not allowed
to follow a phrase of length two. Figure 2.5 shows a Moore-type diagram of this
source.

2

2

3

3

3

4

4

4

Figure 2.5: Simple source that transmits symbols of duration two, three,
and four time units, but a symbol of length two may not follow a symbol
of length two.

www.manaraa.com

2.3. CHANNEL CAPACITY OF CONSTRAINED CHANNELS 27

We can write down the following connection matrix

D(z) =

0 z−2 z−2

z−3 z−3 z−3

z−4 z−4 z−4

 .

Invoking (2.26) we obtain the equation

det

−1 z−2 z−2

z−3 z−3 − 1 z−3

z−4 z−4 z−4 − 1

 = 0,

or

z6 − z3 − z2 − z − 1 = 0.

The capacity of this channel is 0.465.

The following example offers an overview of the approaches for computing
the capacity of a constrained channel.

Example 2.7 Assume we have sequences that have an even number of ’zero’s
between consecutive ’one’s. What is the capacity of this constrained channel?
Below we give three worked approaches to solve this problem.

a) Combinatorics: After a little thought we may see that the number of
allowed sequences N(n) is

N(n) = N(n− 1) +N(n− 2) + 1,

with N(0) = 1 and N(1) = 2. The characteristic equation is therefore

1 = z−1 + z−2

or

z2 − z − 1 = 0.

The largest real root is 1+
√
5

2 , so that the capacity C is

C = log2
1 +

√
5

2
≈ 0.694.

The reader may easily get the impression that 0.694 is a kind of physical con-
stant in Information Theory as it is also the capacity of the source described in
Example 2.3.

b) Markov source approach: The constraints can be cast into the 2-state
labelled directed graph portrayed in Figure 2.6. Any path through the graph
stepping from state to state, and reading off the labels attached to the edges
connecting the states, yields an allowed sequence.

www.manaraa.com

28 CHAPTER 2. ENTROPY AND CAPACITY

1 0

0

Figure 2.6: Two-state Mealy-type source that generates sequences with
an even number of ’0’s between consecutive ’1’s.

The transition matrix is

D =

[
1 1
1 0

]
.

The characteristic equation is

det[D − zI] = z2 − z − 1 = 0.

c) Runlength approach: An allowed sequence can be thought to be built up from
phrases ’1’, ’100’, ’10000’, and so on. The characteristic equation is therefore

z−1 + z−3 + z−5 + · · · = 1

or

z−1 + z−3
(

1

1− z−2

)
= 1

or
z2 − z − 1 = 0.

Many other worked examples of constrained channels will be treated at
greater length in the subsequent chapters.

www.manaraa.com

Chapter 3

Spectral Analysis

3.1 Introduction

The purpose of this chapter is to provide a summary of the art and a tutorial
exposition of the spectral analysis of signals whose statistics are stationary.
After the preliminary notions, a spectral analysis of block-coded sequences is
presented. The spectral analysis of block-coded sequences is compounded
by the fact that its statistical properties are, in general, cyclo-stationary
rather than stationary, that is, the statistics will vary periodically with a
period equal to the duration of a block.

Any time-varying signal can be represented by a set of frequency com-
ponents which occupy a certain range of frequencies. The frequency compo-
nents form the spectrum of the signal and are given by the Fourier transform
of the signal waveform. A significant statistic of a stochastic signal is its
power spectral density function. It is, therefore, both convenient and appro-
priate to begin with a chapter that briefly considers the spectral properties
of signals constituted by coded sequences. It is central to the coding for
input-constrained channels, and plays an important part in the chapters to
follow. Specifically, we shall concentrate on the evaluation of the spectrum
of sequences emitted by a Markov information source. The last sections of
this chapter deal with the spectral properties of sequences of block-coded
signals. The spectral analysis of block codes presented here is derived fol-
lowing the method of Cariolaro, Pierobon, and Tronca [48, 49].

Spectral analysis of random signals is a topic amply developed elsewhere
(see e.g. the textbook by Papoulis [271]) and the outline is, therefore,
very brief and in most cases results are given without proof. The following
sections serve mainly to introduce a glossary of concepts and notation that
will be employed later. It is assumed that the reader has a basic background
in probability theory and random variables. We shall avoid as much of
the detailed mathematical analysis as possible and concentrate upon those
areas where the theory has produced results of relevance to spectral shaping

29

www.manaraa.com

30 CHAPTER 3. SPECTRAL ANALYSIS

codes. The reader who wishes a more leisurely introduction is encouraged
to consult the references quoted for more details of the present topic.

3.2 Stochastic processes

Let a stochastic process Xt be defined as an ensemble of sample functions,
then we may consider the values of the process at any set of time instants
t1 < t2 < . . . < tn. The random variablesXti , i = 1, . . . , n, are characterized
statistically by their joint probability density function (pdf)

p(xt1 , . . . , xtn).

For a specific value of ti the random variable X(ti) can be characterized by
a first-order probability density function, which is denoted by p(xti). The
first-order moments of X(ti) are defined by

M
(n)
X (ti) = E{X(ti)

n} =
∫ ∞

−∞
xn
ti
p(xti)dxti , (3.1)

where E{.} designates expectation or ensemble average. In general, the
nth moment will depend on the instant ti if the pdf of Xti depends on ti.
Of particular interest is the mean value of the process, which is given by
MX(ti) = E{X(ti)}.

Next we consider the two random variables Xt1 and Xt2 . The correlation
between the two random variables is measured by the joint moments

E{Xn
t1
Xm

t2
}
∫ ∞

−∞

∫ ∞

−∞
xn
t1
xm
t2
p(xt1 , xt2)dxt1xt2 . (3.2)

For second-order statistics we are particularly interested in the auto-cor-
relation function, which is defined by

RX(t1, t2) = E{Xt1Xt2}. (3.3)

The value of RX(t1, t2) for t1 = t2 = t is the average power of the process
Xt :

E{X2
t } = RX(t, t). (3.4)

The auto-covariance function is defined by

CX(t1, t2) = E{[Xt1 −MX(t1)][Xt2 −MX(t2)]}. (3.5)

3.2.1 Stationary processes

A process is said to be stationary in the strict sense if all its statistics are
time invariant. When the stochastic process Xt is stationary, the pdf of

www.manaraa.com

3.2. STOCHASTIC PROCESSES 31

the pair (Xt1 , Xt2) is identical to the pdf of (Xt1+t, Xt2+t). Therefore the
auto-correlation function of a stationary process does not depend on the
specific instants t1 and t2, but it depends only on the magnitude of the time
interval between t1 and t2, that is, RX(t1, t2) = RX(t2, t1). Thus,

RX(t1, t2) = E{Xt1Xt2} = RX(|t1 − t2|) = RX(|τ |), (3.6)

where τ = t1 − t2. For symmetry reasons

RX(τ) = RX(−τ). (3.7)

A process is said to be wide-sense stationary if only mean and auto-cor-
relation function are time invariant, that is, if

E{Xt} = MX ,

E{XtXt+τ} = RX(τ).
(3.8)

Consequently, wide-sense stationarity is a less stringent condition than
strict-sense stationarity. When the process is stationary, the auto-covariance
function simplifies into

CX(τ) = RX(τ)−M2
X . (3.9)

The power spectral density function is an important characteristic providing
information concerning power content at low and high frequencies, average
power, and bandwidth. It provides a means of determining the average
interference suffered by embedded tracking, timing, and focus servo mech-
anisms due to the data signal and crosstalk from the signal on adjacent
tracks. The Fourier transform of the auto-correlation function, called the
(two-sided) power spectrum or power spectral density function of the process,
is given by

HX(ω) =
∫ ∞

−∞
RX(τ)e

−jωτdτ, (3.10)

where j =
√−1. Since RX(τ) = RX(−τ), and RX(τ) is real, we conclude

that HX(ω) is real and an even function of ω. It can also be shown, see for
example Papoulis [271], that the spectrum HX(ω) is non-negative for all ω,
which, by the way, is clearly a necessary condition for the interpretation of
HX(ω) as power density to be meaningful. The auto-correlation function
can be found from the inverse Fourier transform relationship

RX(τ) =
1

2π

∫ ∞

−∞
HX(ω)e

jωτdω. (3.11)

The previous equations are known as the Wiener-Kintchine relations. More
insight can be gained by defining the power spectrum HX(ω) as a limit of

HX(ω) = lim
T→∞

1

2T

∣∣∣∣∣
∫ T

−T
x(t)e−jωtdt

∣∣∣∣∣
2

, (3.12)

where x(t) is a specific realization of the process. Obviously, HX(ω) is
non-negative.

www.manaraa.com

32 CHAPTER 3. SPECTRAL ANALYSIS

3.2.2 Cyclo-stationary processes

Many stochastic processes that we will encounter in the next chapters are
processes whose statistics are periodic rather than time invariant. A process
whose statistics such as symbol probability, correlation between symbols,
etc., vary periodically with some period is said to be cyclo-stationary. This
phenomenon may arise, for instance, in synchronous pulse amplitude mod-
ulated systems where information is transmitted in fixed-length time slots.
For a comprehensive discussion of cyclo-stationary processes the reader is
referred to the book by Franks [98], the paper by Bennett [26] or the paper
by Bosik [40]. A wide-sense cyclo-stationary process satisfies the following
relationship:

MX = E{X(t)} = MX(t+ T)

RX(t, t+ τ) = RX(t+ T, t+ T + τ),
(3.13)

where T , the smallest time interval giving equality, is called the period. As
an illustration, consider a synchronous pulse amplitude modulated signal.
The modulation is said to be synchronous because of the uniform spacing
between successive pulses. For a sound understanding of pulse amplitude
modulation the reader is referred to the book by Cattermole [52].

Suppose that a message sequence {xj : j ∈ Z} is transmitted with a
standard pulse shape s(t) for each digit and a standard period Tb. The
general expression for a modulated signal is then

X(t) =
∞∑

j=−∞
xjs(t− jTb), (3.14)

where {xj} is assumed to be a wide-sense stationary sequence, such that

E{xj} = x̄

E{xjxj+k} = Rx(k).
(3.15)

It should be appreciated that Rx(k) is a time-discrete auto-correlation func-
tion. Working out yields

E{X(t)} =
∑

j

E{xj}s(t− jTb) = x̄
∑

j

s(t− jTb) (3.16)

and

RX(t, t+ τ) =
∑

i

∑

j

E{xixj}s(t− iTb)s(t+ τ − jTb)

=
∑

k

Rx(k)
∑

i

s(t− iTb)s(t+ τ − (i+ k)Tb).
(3.17)

The sum over i is periodic with period Tb, and it can be seen that

E{X(t)} = E{X(t+ Tb)} and

RX(t, t+ τ) = RX(t+ Tb, t+ Tb + τ),

www.manaraa.com

3.2. STOCHASTIC PROCESSES 33

from which we conclude that the signal X(t) is wide-sense cyclo-stationary
with period Tb.

A useful technique for our purposes is to define an equivalent stationary
process whose statistics are those of the cyclo-stationary process averaged
over the period T. The cyclo-stationary process X(t) is changed into a sta-
tionary processX∆(t) by adding a random variable ∆, uniformly distributed
over 0 ≤ ∆ < T , such that

X∆(t) = X(t−∆), (3.18)

and defining the spectral density of the cyclo-stationary process as the
Fourier transform of the auto-correlation of the stationary process X∆(t).
The physical justification of this approach (see Cattermole and O’Reilly
[54]) is that, if measurements are made without a time reference, these are
the statistics which will be normally observed. A practical spectrum an-
alyzer comprises a bank of narrow-band filters whose output is averaged
over a period much longer than the period times of the signals. Thus, if we
assume that ∆ is uniformly distributed over 0 ≤ ∆ < Tb, then we have

E{X∆(t)} = x̄
∑

i

1

Tb

∫ Tb

0
s(t− iTb − ξ)dξ

= x̄
1

Tb

∫ ∞

−∞
s(t)dt is constant

(3.19)

and

R̃X(τ) = E{X∆(t)X∆(t+ τ)}
=

∑

k

Rx(k)
∑

i

1

Tb

∫ Tb

0
s(t− iTb − ξ)s(t+ τ − (i+ k)Tb − ξ)dξ

=
∑

k

Rx(k)rs(τ + kTb),

(3.20)
where

rs(τ) =
1

Tb

∫ ∞

t=−∞
s(t+ τ)s(t)dt. (3.21)

The same result could have been obtained by simply averaging the auto-
correlation function over one period (in t).

For the stationary case there is also a simple relationship between the
power spectral density functions of the process {xi} and s(t). To show this,
we take the Fourier transform of R̃X(τ), given by (3.20), and obtain

HX∆
(ω) = Hx(ω)Hs(ω), (3.22)

where

Hx(ω) =
∞∑

k=−∞
Rx(k)e

−jkωTb

www.manaraa.com

34 CHAPTER 3. SPECTRAL ANALYSIS

and
Hs(ω) =

∫ ∞

−∞
rs(t)e

−jωtdt.

Thus, the power spectral density function of the phase-averaged process is
obtained by multiplying the power spectral density function of the process
{xi} by the shaping function, or energy spectrum, Hs(ω). From the previous
equation, it is clear that the overall spectral characteristic of the process
{X} can be tailored by designing an appropriate s(t) and the correlation
characteristics of the sequence {xi}. In various communication channels,
such as conventional optical or magnetic recorders, we do not have the
freedom of conditioning the standard pulse shape s(t). In this case, the
spectral density function of the process {X} can only be shaped to certain
requirements by providing dependence between consecutive symbols of the
channel sequence {xi}. This is the province of the spectral shaping codes.

The write signal s(t) in conventional recorders is a full-Tb pulse with a
pulse shape given by

pTb
(t) =

{
1, 0 ≤ t < Tb,
0, otherwise.

(3.23)

In this particular case, we find

Hs(ω) =
∫ ∞

−∞
rs(t)e

−jωtdt=

(
sinωTb/2

ωTb/2

)2

Tb. (3.24)

In the sequel we assume, for clerical convenience, unity symbol time interval,
or Tb = 1.

The subsequent sections provide an evaluation of the power spectral
density function of sequences emitted by Markov information sources and
of block-coded sequences.

3.3 Spectra of Markov sources

Suppose we are given the output of an N−state Markov information source
{Xt : t ∈ Z}. Given the transition matrix, Q, of the Markov source, one
can always select the initial state distribution vector in such a way that the
resulting chain is stationary. Invoking the definitions given in Chapter 2,
and by virtue of the assumed ergodicity of the Markov chain described
therein, we can write down the auto-correlation (see Bilardi, Padovani &
Pierobon [31] and Galko & Pasupathy [107])

Rx(k) = E{XtXt+k} (3.25)

of the emitted sequence. Let w
(t)
i be the probability that the chain is in

state σi at the symbol interval t, then we can represent the probability that

www.manaraa.com

3.3. SPECTRA OF MARKOV SOURCES 35

the system is in state j at the (t+ k)th, k ≥ 0, interval by

w
(t+k)
j =

N∑

i=1

[Q]kijw
(t)
i ,

where [Q]kij denote the entries of Q
k. In the long run, the state distribution

vector converges to the equilibrium distribution vector from any valid initial
state probability vector w(1), thus

π = lim
t→∞w(1)Qt−1. (3.26)

The equilibrium distribution vector is obtained by solving the system of
linear equations in the N unknowns π1, . . . , πN :

πQ = π, (3.27)

along with the normalizing condition

N∑

i=1

πi = 1.

Assuming a Moore-type Markov source (see Chapter 2), the symbol emitted
when the chain visits state σi is ζ(σi), i = 1, . . . , N . Taking account of the
steady-state probabilities and averaging yields

Mx = E{Xt} =
N∑

i=1

ζ(σi)πi. (3.28)

From the Markov condition we conclude

Cx(k) = E{XtXt+k} −M2
x

=
N∑

i=1

N∑

j=1

πiζ(σi)ζ(σj)[Q]
|k|
ij −

(
N∑

i=1

ζ(σi)πi

)2

=
N∑

i=1

N∑

j=1

πiζ(σi)([Q]
|k|
ij − πj)ζ(σj).

(3.29)

The preceding equations can be written more conveniently in matrix nota-
tion. Let ζ be the column vector

ζT = (ζ(σ1), . . . , ζ(σN))

and Π the diagonal matrix Π = diag{π1, . . . , πN}. Let further

Q∞ = 1π, (3.30)

www.manaraa.com

36 CHAPTER 3. SPECTRAL ANALYSIS

where 1 is a column vector of all ones. Thus Q∞ has all its rows equal to
the steady-state probability vector π. Now the auto-covariance function of
the emitted sequence can be written as

Cx(k) = ζTΠ(Q|k| −Q∞)ζ. (3.31)

The power spectral density function of the X-process is

Hx(ω) =
∞∑

k=−∞
Rx(k)e

−jkω

= M2
x2πδ(ω) + Cx(0) + 2

∞∑

k=1

Cx(k) cos kω.

(3.32)

Before we will proceed with the spectral analysis of sequences generated
by channel encoders, we will give a detailed description of the operating
principles of encoders. As encoders are closely related to their inverting
counterpart, the decoders, we will discuss them as well.

3.4 Description of encoder models

Physically, an encoder can be interpreted as a device with an m-bit input,
an n-bit output, and an internal state. The principle of operation of an
encoder can be represented by a conventional finite-state sequential machine
(FSSM), a well-known concept in the fields of computation and automation
theory. The specific codeword transmitted by the encoder is, in general,
a function of the m-bit source word that enters the encoder and depends
further on the particular state of the encoder. The sequential machine is
defined in terms of three sets: the inputs, the outputs and the states, and
two logical functions: the output function and the next-state function. The
principles of operation of an encoder, taken from Cattermole and O’Reilly
[54], can be described as follows:

1. The input set B of m-digit (binary) words.
We assume the source code to be non-redundant, so that |B| =
2m ≡ M . A source word will be denoted by the symbol βu, u =
0, 1, . . . ,M − 1. The kth source word in an input sequence will be
denoted by bk (k any integer).

2. The set Σ of states.
We assume this to be finite, with |Σ| ≡ N . A state considered in the
abstract will be denoted by σi, (i = 1, 2, . . . , N). The state at the
time the kth source word is translated will be denoted by sk.

www.manaraa.com

3.4. DESCRIPTION OF ENCODER MODELS 37

3. The output set X of n-digit codewords.
It is convenient to identify output codewords by a double index: the
word χiu is the translation of the source word βu which is delivered
when the encoder is in state σi. Consequently, |X| ≤ NM . Not all
these words have to be distinct, since the same words may be used in
more than one state. The foregoing notation applies to codewords in
the abstract: the kth codeword in an output sequence will be denoted
by xk.

4. The output function h has domain Σ × B and range X. It specifies
the translation χiu = h(σi,βu). In operation,

xk = h(sk,bk). (3.33)

The output function is commonly chosen such that it has a special
form of inverse h−1(χiu) = βu. That is, knowledge of χ must identify
β without reference to the state σ, to ensure unique decodability.

5. The next-state function g has domain Σ×B and range Σ. It specifies
the state in which the encoder is left after translating one source word,
so that

sk+1 = g(sk,bk). (3.34)

This definition accords with the usual finite-state machine convention,
but in our context a useful state-transition function may be defined
with the output, rather than the input, as an argument. This function
f has domain X × Σ and range Σ, and defines the next state as

sk+1 = f(sk,xk). (3.35)

Given the attribute of unique decodability, these approaches are equiv-
alent, but since the states of an encoder derive directly from the his-
tory of the output, the second version may be simpler.

In a Moore-type finite-state machine the codeword xk is a function of
the state only (and is independent of the source word), or

xk = h(sk). (3.36)

Mealy machines can be dealt with as Moore machines, provided that we
consider as a new state the pair(σi,βu). This structure offers some simpli-
fication in the characterizing function representation. Figure 3.1 portrays a
block diagram of a Mealy-type finite-state sequential machine.

The description of the encoder is reminiscent of the Markov information
source described in Chapter 2. It has to be borne in mind that a Markov
information source is an autonomous machine without ’inputs’ whereas an

www.manaraa.com

38 CHAPTER 3. SPECTRAL ANALYSIS

encoder is a function that translates input words into an encoded output
sequence. The sequence of encoder states, if the inputs are independent,
is a stationary Markov chain, since the ’next’ state depends only on the
previous state and on the input which is, by assumption, independent of
previous states or inputs.

m bits n bits

k
h(s ,b)

k

f(s ,b)
k k

Figure 3.1: Block diagram of Mealy-type finite-state sequential machine.

The functions g() and h() defining the FSSM are called the characterizing
functions. They can be specified by means of a table, called a transition
table, or in our context called a codebook. For 1 ≤ i ≤ N , the function
hi : B → X defined by hi(βu) = h(σi, βu) is called the i-th code page. Al-
ternatively, these functions can be specified by means of an oriented graph,
called state-transition diagram. The advantage of the state-transition dia-
gram is both conceptual and computational. It enables one to visualize an
FSSM as a mechanism which traces paths along a graph in accordance with
the input sequence. Given an initial state and an input sequence, it also
enables one to determine the corresponding state and output sequences by
inspection of the labels.

Example 3.1 Table 3.1 shows the complete specification of a code that can be

modelled with a 3-state Mealy-type encoder. The encoder translates 2-bit input

words into 4-bit codewords under the rules set by the FSSM. The source sequence

is partitioned into 2-bit source words. Let a sample source sequence be ’10 01 10

11’, and assume an initial state s0 = σ1. Then the coded output sequence can

easily be obtained. The next state is s1 = g(s0 = σ1,
′ 10′) = σ2. In the same

way: s2 = σ2, s3 = σ3, and s4 = σ2. The resulting output sequence is ’1010 1001

1010 0101’.

www.manaraa.com

3.5. SPECTRA OF BLOCK-CODED SIGNALS 39

Table 3.1: Codebook of three-state R = 1/2 code.

β h, g(σ1, β) h, g(σ2, β) h, g(σ3, β)
00 0110, σ1 0110, σ2 0110, σ3

01 1001, σ1 1001, σ2 1001, σ3

10 1010, σ2 1010, σ3 0011, σ1

11 1100, σ3 0101, σ1 0101, σ2

In the next section, we will continue the discussion of the spectra of encoded
sequences.

3.5 Spectra of block-coded signals

Many codes that we will encounter in the next chapters are constituted
by block codes. In this code format the source information is grouped in
source words (blocks) of m bits. The m-bit source information is translated
according to the encoding rules into blocks of n bits called codewords.

Let xj = (xj,1, . . . , xj,n) denote the jth transmitted codeword. The
symbols xj,i, 1,≤ i ≤ n, comprising the jth codeword are assumed to be
sent serially. Then the general expression for a block-encoded sequence is

X(t) =
∞∑

j=−∞

n∑

i=1

xj,is[t− (jn+ i− 1)], (3.37)

where as in Section 3.2.2, s(t) denotes the standard pulse shape. We have
seen in Section 3.2.2 that a time synchronous pulse amplitude signal is cyclo-
stationary with the period equal to the channel bit interval. Block codes
may exhibit a second periodicity, of period n, and the equivalent stationary
statistics are obtained by phase-averaging over this longer period. The
auto-correlation of the emitted sequence must, therefore, take into account
the block interval and the position of both symbols within a codeword.
Cariolaro & Tronca [48], Biglieri & Caire [30] introduced an elegant matrix
formulation for the correlations, as follows. Define the n× n matrix

Rk = E{xT
t xt+k}, k = 0, ∓1, ∓2, . . . , (3.38)

where the expectation operator E{.} applies to all entries of the matrix.
The equivalent phase-averaged process has auto-correlation function

nRx(kn+ l) =
n−l∑

i=1

[Rk]i,l+i +
n∑

i=n−l+1

[Rk+1]i,l+i−n, 0 ≤ l ≤ n− 1, (3.39)

where [Rk]u,v denotes the u, v entry of Rk. Note that each distinct term in
the series is the average of n contributions deriving from different symbol

www.manaraa.com

40 CHAPTER 3. SPECTRAL ANALYSIS

positions, in accordance with the phase-averaging principle. The process
of phase-averaging the auto-correlation function is visualized in Figure 3.2.
For l = 0, the phase-averaged Rx(kn + l), k = 0, ∓1, ∓2, . . ., is given by
the arithmetic average of the diagonal entries of Rk, whereas for l > 0 we
have to average some upper diagonal entries of Rk and some lower diagonal
entries of Rk+1. The equivalent power spectrum is

Hx(ω) =
∞∑

i=−∞
Rx(i)e

−jiω. (3.40)

Let ω be the row vector

ω = (ejω, ej2ω, . . . , ejnω)

with transposed conjugate ω∗. Then Hx(ω) can be cast into the following
elegant expression

Hx(ω) =
1

n

∞∑

k=−∞
ωRkω

∗e−jknω. (3.41)

It can be shown by writing out that this relation is identical with (3.40).

Rk
Rk+1

Rx(kn)

Figure 3.2: Visualization of the process of phase-averaging the auto-
correlation function. Each distinct term in the series is the average of n
contributions deriving from different symbol positions, in accordance with
the phase-averaging principle. After Cariolaro et al. 1983 [49].

A general expression of the power spectral density function is

Hx(ω) = Hxc (ω) +Hxd (ω)
∞∑

k=−∞
2πδ(ω − 2πk/n), (3.42)

www.manaraa.com

3.5. SPECTRA OF BLOCK-CODED SIGNALS 41

whereHxc (ω) andHxd (ω) designate the continuous and discrete components
or spectral lines of the spectrum. The δ-functions in (3.42) represent power
concentrated at various multiples of the codeword frequency 1/n. Necessary
and sufficient conditions for the encoded sequence to have a spectral line
of given amplitude and frequency have been derived by Kamabe [184]. In
general, the discrete components are considered to be a waste of power as
far as information transmission is concerned. The presence of spectral lines
at certain frequencies is not wholly undesirable in certain applications since
they can be exploited to extract timing or position information. Other
types of periodic behavior, such as that resulting from periodic insertion of
synchronizing pulses, may also give rise to discrete components in the power
spectral density function.

After rearrangement of (3.41), we can partition the spectrum Hx(ω) into
discrete and continuous parts:

Hxc (ω) =
1

n
ω(R0 −R∞)ω∗ +

2

n
Re

∞∑

k=1

ω(Rk −R∞)ω∗e−jknω (3.43)

and

Hxd (ω) =
1

n2
ωR∞ω∗. (3.44)

R∞ is the limit of the correlation matrices Rk as k → ∞. The determination
of the spectral density, then, requires the calculation of

1. The sequence of correlation matrices Rk, k = 0, 1, 2,

2. Its limit

R∞ = lim
k→∞

Rk. (3.45)

3. The sum of the matrix series (3.43) and (3.44).

The above matrices in turn require the knowledge of the codeword bivariate
probabilities, which are determined in the next subsection.

A great deal of the utility of the previous spectral computation would be
lost if it were not possible to model an encoder as a finite-state (sequential)
machine. It turns out, however, that most of the implemented encoder
schemes can be simply treated in terms of Markov models. The next section
provides a formal description of an encoder.

3.5.1 Spectral analysis of Moore-type encoders

Under general assumptions on the coding mechanism, it is possible to de-
rive in closed form an expression for the power spectral density function of
sequences produced. The computation of the spectrum of a block-encoded

www.manaraa.com

42 CHAPTER 3. SPECTRAL ANALYSIS

signal is slightly more complicated than that of the spectrum of a sequence
emitted by an ergodic Markov source [355].

An encoder controlled by a source of independent random inputs can
be modelled by a Moore-type finite-state sequential machine (FSSM). It is
characterized by an N ×N transition probability matrix Q and the output
matrix Γ of dimension N × n, whose ith row is the codeword χi = h(σi) of
length n transmitted when the machine visits the state σi. The transition
probabilities qij can be found by identifying the subset of input words that,
on their occurrence of state i, cause a transition to state j. Let the sta-
tionary distribution be denoted by π. In a Moore-type FSSM driven by a
stationary source composed of independent and equiprobable symbols, the
correlation matrix is given by

Rk = ΓTΠQ|k|Γ, (3.46)

where Π is the diagonal matrix Π = diag{π1, . . . , πN}. This reduces, ig-
noring some notational convention, to (3.31) when n = 1. Throughout this
text, the analysis is conducted on the assumption that the source words are
independent and equiprobable. The theory can, however, be extended to
the more general case where the source words are independent.

Now, from the theory of the ergodic and regular Markov chains Q has
all its eigenvalues with modulus less than unity, with the exception of a
simple eigenvalue λ1 = 1. As a consequence, see [48], the limiting transition
probability matrix exists such that

Q∞ = lim
k→∞

Qk = 1π,

that is, Q∞ has all its rows equal to the steady-state probability vector π.
The codeword mean value correlation is given by

m = πΓ.

Passing to the limit in (3.46), we obtain

R∞ = lim
k→∞

Rk = ΓTΠQ∞Γ = ΓTπTπΓ = mTm, (3.47)

where use is made of the relation ΠQ∞ = Π1π = πTπ. We shall illustrate
the preceding theory with an example which describes in detail the spectral
properties of the code called MFM.

Example 3.2 MFM, (the acronym stands for Modified Frequency Modulation)
also called Delay Modulation, is a rate 1/2 code with the virtue that at least
two and at most four consecutive like symbols may occur in the transmitted
sequence. This particular code was patented by Miller of Ampex in 1963 and
is therefore often called the Miller code [247]. The MFM code belongs to the

www.manaraa.com

3.5. SPECTRA OF BLOCK-CODED SIGNALS 43

important category of runlength-limited codes which will be described in detail
in Chapter 5. As indicated by Hecht and Guida [128], the MFM coding scheme
can be modelled as a Markov source with four states.

The encoding procedure can be described with the state-transition diagram
shown in Figure 3.3. Perusal of Figure 3.3 leads to the following state-transition
and codeword matrix:

QMFM =

0 1/2 0 1/2
0 0 1/2 1/2
1/2 1/2 0 0
1/2 0 1/2 0

 , Γ =

−1 −1
−1 +1
+1 −1
+1 +1

 .

The limiting correlation matrix Q∞
MFM can be found by inspection:

Q∞
MFM =

1

4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

The stationary state probabilities are

π1 = π2 = π3 = π4 =
1

4
.

Thus

Π =
1

4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 2

3 4

0:-- 1:-+

1:+- 0:++

1/2

1/2

1/2

1/2

1/21/2

1/2 1/2

Figure 3.3: Moore-type state-transition diagram of MFM code. After
Lindholm 1978 [226]. The four states, embodied by circles, are connected
by arrows which represent allowed transitions from one state to the other.
Along the edges we have indicated the probability that the chain goes
from one state to the other. Within the circles we have indicated (a) the
state number, (b) the source symbol, and (c) the waveform transmitted
by the chain when it enters a certain state. For example, the word (+1,
-1) is emitted when the chain enters State 3.

www.manaraa.com

44 CHAPTER 3. SPECTRAL ANALYSIS

So that we conclude m = 0 and R∞ = 0. From the simple fact that R∞ = 0, we
infer that the power spectral density function of the MFM code has no spectral
lines, or Hxd (ω) = 0. After a computation we find

R0 =

[
1 0
0 1

]
, R1 =

1

2

[−1 −1
1 −1

]

and

R2 =
1

2

[
0 1
−1 0

]
, R3 =

1

4

[
1 −1
1 1

]
.

The following useful characteristic can be written down:

Rk+4 = −1

4
Rk, k ≥ 0. (3.48)

After the phase averaging process, using (3.39), we obtain

R(2i) =
1

2
{[Ri]1,1 + [Ri]2,2}

R(2i+ 1) =
1

2
{[Ri]1,2 + [Ri+1]2,1}, i ≥ 0.

(3.49)

Thus, the list of eight values of the auto-correlation function, derived after some
bookkeeping, listed in Table 3.2 completely specifies R(i).

Table 3.2: The correlation function R(i) for MFM code.

R(0) = 1 R(4) = 0
R(1) = 0.25 R(5) = 0.375
R(2) = −0.5 R(6) = 0.25
R(3) = −0.5 R(7) = −0.125

The power spectral density function of MFM is

HMFM(ω) = 1 + 2Re

[
1

1 + e−j8ω

4

8∑

i=1

R(i)e−jiω

]
.

After an evaluation, we obtain

HMFM(ω) =
3 + cosω + 2 cos 2ω − cos 3ω

9 + 12 cos 2ω + 4 cos 4ω
.

The spectral density function of the MFM code is plotted in Figure 3.4. Since the

curves are always even functions, only the base interval 0 ≤ f = ω/(2π) ≤ 1/2 is

shown in the illustrations that follow.

www.manaraa.com

3.5. SPECTRA OF BLOCK-CODED SIGNALS 45

0.00 0.10 0.20 0.30 0.40 0.50
f

0

2

4

6

P
S

D

Figure 3.4: Power density function of MFM code as a function of the
frequency f = ω/(2π).

3.5.2 Spectrum of memoryless block codes

Having discussed the general spectral analysis of block-coded sequences, we
turn in this section to the relatively simple case of sequences generated by
a memoryless encoder. In other words, we consider a type of encoder which
has the property that there is an unambiguous, one-to-one mapping between
source words and their associated codewords. This is a valid representative
of some practical block codes, and this type of encoder model allows us to
write down simplified relations of the power spectral density function of the
generated sequence. The digression of the general model provides a simple
interpretation, and it also serves to introduce some specific results that are
used in the subsequent chapters.

To this end, assume the codeword set X comprises M codewords, the
uth element of the codeword set is denoted by χu = (χ

(u)
1 , . . . , χ(u)

n), 0 ≤
u ≤ M − 1. It is not required that M is a power of 2, albeit in many
practical cases this is indeed the case. The codewords are randomly chosen
from the codebook X to form an infinite sequence, which is sent serially.
The power spectral density function of the emitted sequence can be divided
again into a continuous and a discrete (line) part:

H(ω) = Hc(ω) +Hd (ω)
∞∑

k=−∞
2πδ(ω − 2πk/n), (3.50)

www.manaraa.com

46 CHAPTER 3. SPECTRAL ANALYSIS

where Hc(ω) and Hd (ω) denote the continuous and discrete components
of the spectrum. The combination of (3.43), (3.44), (3.47), and using the
fact that for a memoryless encoder Rk = 0, k 6= 0, leads to the following
simplified equations:

Hc(ω) =
1

n
ω(R0 −R∞)ω∗ (3.51)

and

Hd (ω) =
1

n2
ωR∞ω∗. (3.52)

After rearrangement of these equations, we obtain

Hd (ω) =
1

n2
{

n∑

i=1

ν2
i + 2

n−1∑

k=1

n−k∑

i=1

νiνi+k cos kω} (3.53)

and

Hc(ω) =
1

n
{µ0 + 2

n−1∑

k=1

µk cos kω}, (3.54)

where

νk =
1

M

M−1∑

u=0

χ
(u)
k , 1 ≤ k ≤ n (3.55)

and

µk =
1

M

n−k∑

i=1

M−1∑

u=0

(χ
(u)
i − νi)(χ

(u)
i+k − νi+k), 0 ≤ k ≤ n− 1. (3.56)

As a direct consequence, we conclude that the spectrum is line free, provided
νk = 0, k = 1, . . . , n−1. Stated alternatively, the spectrum of a memoryless
block code is line free if for all i, 1 ≤ i ≤ n, the number of codewords χu ∈ X

with χ
(u)
i = 1 equals the number of codewords with χ

(u)
i = −1 (i.e. the sum

of all codewords in X is the all-zero vector). The non-existence of a line
spectrum is guaranteed (sufficient condition) when the code set consists
of codeword pairs of opposite polarity. It should be appreciated that the
preceding outcomes hold only (this has been the assumption throughout
this chapter) provided all words are equiprobable.

We next consider an alternative expression for the power spectral density
function of a memoryless block code which is chosen for its simplicity and
ease of interpretation. For clerical convenience we confine ourselves to the
assumption that the spectrum is line free, i.e. Hd (ω) = 0. Let χu =

(χ
(u)
1 , . . . , χ(u)

n) be the uth element of a set X of codewords. The Fourier
transform X(u)(ω) of the codeword χu is defined by

X(u)(ω) =
n∑

i=1

χ
(u)
i e−jiω. (3.57)

www.manaraa.com

3.5. SPECTRA OF BLOCK-CODED SIGNALS 47

If, again, codewords are randomly chosen from the codebook X to form an
infinite sequence, then it is straightforward to show that the power spectral
density function H(ω) of the concatenated sequence, when the symbols are
transmitted serially, is given by

H(ω) =
1

Mn

M−1∑

u=0

∣∣∣X(u)(ω)
∣∣∣
2
. (3.58)

It can be shown by multiplying out the matrix products that the preceding
equation is equivalent with (3.51). Equation (3.58) reveals that the power
spectral density function of the cascaded sequence is the average of the
spectra of each individual codeword. In the next example we shall elaborate
on the preceding theory, and establish the power spectral density function
of a sequence generated by a memoryless encoder which employs a set of
codewords with equal numbers of ’ones’ and ’zeros’.

Example 3.3 Assume the codeword set comprises two codewords, namely

χ1 = (+1,−1)

and its inverse
χ2 = (−1,+1).

This block code, called bi-phase, also referred to as Manchester code, is a popular
rate 1/2, encoding function in low-end magnetic disk drives. The reasons for
the popularity are self-clocking capability and extremely simple encoding and
decoding circuits. The spectrum is line free as χ1 =−χ2. The Fourier transform
of the codewords is

X(1)(ω) = e−jω − e−2jω

and
X(2)(ω) = −e−jω + e−2jω.

So that, using (3.58), the spectrum of the bi-phase code, HBiΦ(ω), is

HBiΦ(ω) =
1

4

{
|X(1)(ω)|2 + |X(2)(ω)|2

}
= 2 sin2

ω

2
.

Note that HBiΦ(0) = 0, which is the reason why this code is called a dc-
balanced or dc-free code. In the next example we shall elaborate on the
preceding example, and establish the power spectral density function of
more dc-free code comprising a set of codewords with equal numbers of
’ones’ and ’zeros’.

Example 3.4 Let X consist of all sequences χ = (χ1, χ2, . . . , χn) ∈ {−1, 1}n
such that

∑n
i=1 χi = 0. A codeword with equal numbers of +1s and -1s is called

a zero-disparity codeword and, obviously, the codeword length n is even. The
number of zero-disparity codewords, M , is given by the binomial coefficient

M = |X| =
(

n

n/2

)
. (3.59)

www.manaraa.com

48 CHAPTER 3. SPECTRAL ANALYSIS

By virtue of the fact that the codeword set consists of pairs of codewords of
opposite polarity, we conclude that the spectrum is line free, or Hd (ω) = 0.

For symmetry reasons we conclude that the correlation between symbols does
not depend on the actual symbol positions j1 and j2, j1 6= j2, within a codeword,
or

1

M

M−1∑

u=0

χ
(u)
j1

χ
(u)
j2

= ε, j1 6= j2.

Using (3.56) yields

µk =
1

M

n−k∑

i=1

M−1∑

u=0

χ
(u)
i χ

(u)
i+k = (n− k)ε, 1 ≤ k ≤ n− 1.

As χi ∈ {−1, 1}, we have

ε =
1

M

M−1∑

u=0

χ
(u)
j1

χ
(u)
j2

=
1

M
{N(χj1χj2 = 1)−N(χj1χj2 = −1)}

=
2

M
N(χj1 = χj2)− 1

=
4

M
N(χj1 = χj2 = 1)− 1, j1 6= j2,

(3.60)

where N(.) denotes the number of codewords satisfying the condition in parenthe-
ses. By inspection, we find that the number of codewords for which χj1 = χj2 = 1
(it is simply the number of words of length n− 2 with n/2 symbols equal to -1)
equals

N(χj1 = χj2 = 1) =

(
n− 2

n/2

)
,

or
4

M
N(χj1 = χj2 = 1) = 4

(
n− 2

n/2

)
/

(
n

n/2

)
=

n− 2

n− 1
,

so that

µk =

n, k = 0,
k−n
n−1 , 0 < k ≤ n,

0, k > n.

(3.61)

After a routine computation, using (3.50), (3.54), and (3.61), we can write down
the power spectral density

Hn(ω) =
n

n− 1

{
1−

(
sinnω/2

n sinω/2

)2
}
. (3.62)

Note from the above equation that Hn(0) = 0, that is the power vanishes at the
zero frequency, which is the reason why this group of codes is usually called dc-
free or dc-balanced code. Dc-free codes are of great weight for input-constrained
channels. Many other examples of dc-free codes will be given in the next chapters.
Figure 3.5 shows the power density function,Hn(ω), of zero-disparity codes versus
frequency with the codeword length, n, as a parameter. Let the codeword length

www.manaraa.com

3.5. SPECTRA OF BLOCK-CODED SIGNALS 49

be n = 2. In this elementary case, there are only two zero-disparity codewords,
namely (1,−1) and its inverse (−1, 1), and the power spectral density function
H2(ω) of the bi-phase code can be readily derived to be equal to the result as
previously derived in Example 3.3.

0.00 0.10 0.20 0.30 0.40 0.50
0.0

0.5

1.0

1.5

2.0

P
S

D

n=8 6 4 2

Frequency f

Figure 3.5: Power density function of zero-disparity codes versus fre-
quency, f = ω/2π, with the codeword length n as a parameter. The
power vanishes at the zero frequency which is the reason why this group
of codes is usually called dc-free or dc-balanced.

www.manaraa.com

50 CHAPTER 3. SPECTRAL ANALYSIS

www.manaraa.com

Chapter 4

Runlength-limited Sequences:
Theory

4.1 Introduction

Codes based on runlength-limited sequences have been the state of the art
corner stone of current disc recorders whether their nature is magnetic or
optical. In this chapter, we shall provide a detailed description of various
properties of runlength-limited sequences and in the next chapter we will
give a comprehensive review of the code construction methods, ad hoc as
well as systematic, that are available.

The length of time usually expressed in channel bits between consecutive
transitions is known as the runlength. For instance, the runlengths in the
word ’0111100111000000’are of length 1, 4, 2 3, and 6. Runlength-limited
(RLL) sequences are characterized by two parameters, (d + 1) and (k +
1), which stipulate the minimum (with the exception of the very first and
last runlength) and maximum runlength, respectively, that may occur in
the sequence. The parameter d controls the highest transition frequency
and thus has a bearing on intersymbol interference when the sequence is
transmitted over a bandwidth-limited channel. In the transmission of binary
data it is generally desirable that the received signal is self-synchronizing or
self-clocking. Timing is commonly recovered with a phase-locked loop which
adjusts the phase of the detection instant according to observed transitions
of the received waveform. The maximum runlength parameter k ensures
adequate frequency of transitions for synchronization of the read clock. The
grounds on which d and k values are chosen, in turn, depend on various
factors such as the channel response, the desired data rate (or information
density), and the jitter and noise characteristics.

Recording codes that are based on RLL sequences have found almost
universal application in disc recording practice. In consumer electronics, we
have the EFM code (rate = 8/17, d = 2, k = 10), which is employed in the

51

www.manaraa.com

52 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

Compact Disc (CD), and the EFMPlus code (rate = 8/16, d = 2, k = 10)
used in the DVD, the successor of the CD. The future of RLL sequences is
very bright as also in new mass storage products, such as BluRay Disc, a
rate 2/3, parity preserving word assignment (see Section 11.4.3, page 288)
(1,7) dc-free RLL code has been adopted [260].

Runlength-limited codes, in their general form, were pioneered in the
1960s by Berkoff [27], Freiman & Wyner [101], Kautz [196], Gabor [106],,
Shaft [297], Tang & Bahl [319, 320], and notably Franaszek [96]. It is un-
doubtedly the case that RLL codes have generated a high and sustained
level of interest amongst researchers ever since the introduction of the ba-
sic ideas. There is now a considerable amount of literature available on
the design of encoding and decoding devices for generating RLL sequences.
Before detailing the theory of RLL sequences, it is convenient to introduce
another constrained sequence, which is closely related to an RLL sequence.

Definition: A dk-limited binary sequence, in short, (dk) sequence, satisfies
simultaneously the following two conditions:

1. d constraint - two logical ’one’s are separated by a run of consecutive
’zero’s of length at least d.

2. k constraint - any run of consecutive ’zero’s is of length at most k.

If only proviso (1.) is satisfied, the sequence is said to be d-limited (with
k = ∞), and will be termed (d) sequence.

In general, a (dk) sequence is not employed in optical or magnetic
recording without a simple coding step. A (dk) sequence is converted to
a runlength-limited channel sequence in the following way. Let the channel
signals be represented by a bipolar sequence {yi}, yi ∈ {−1, 1}. The chan-
nel signals represent the positive or negative magnetization of the recording
medium, or pits or lands when dealing with optical recording. The logical
’one’s in the (dk) sequence indicate the positions of a transition 1 → −1 or
−1 → 1 of the corresponding RLL sequence. The (dk) sequence

0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 ...

would be converted to the RLL channel sequence

1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 -1 -1 1

The mapping of the waveform by this coding step is known as precoding. A
confusing term since it is in fact a ’postcoding process’. We shall avoid this
term, and use the designation change-of-state encoding instead. Sequences
that are assumed to be recorded with such a change-of-state encoding step,

www.manaraa.com

4.1. INTRODUCTION 53

as for example, (dk) sequences, are said to be given in non-return-to-zero-
inverse NRZI1 notation. Waveforms that are transmitted without such an
intermediate coding step are referred to as non-return-to-zero (NRZ). The
names stem from telegraphy and have no meaning in relation to recording
channels. These nebulous terms are in common use and we will continue
its use in the rest of this text. Coding techniques using the NRZI format
are generally accepted in digital optical and magnetic recording practice.
The NRZI format is convenient in magnetic recording since differentiation
occurs as part of the physical process in the heads. The original signal is
restored in a quite natural fashion by observing the peaks in the retrieved
signal. The peaks coincide with the ’one’s of the stored sequence in NRZI
notation. The use of the NRZI format in non-differentiating channels, such
as the Compact Disc, is less obvious.

It can readily be verified that the minimum and maximum distance
between consecutive transitions of the RLL sequence derived from a (dk)
sequence is d+1 and k+1 symbols, respectively, or in other words, the RLL
sequence has the virtue that at least d + 1 and at most k + 1 consecutive
like symbols (runs) occur.

Table 4.1: Various codes with runlength parameters d and k.

d k R
0 1 1/2 FM, Bi-phase
1 3 1/2 MFM, Miller
2 7 1/2 (2,7)
1 7 2/3 (1,7)
2 11 1/2 3PM
2 10 8/17 EFM

In Table 4.1 we have collected some parameters of runlength-limited codes
that have found practical application. The characteristics of the various
codes will be explained in this and other chapters to come.

The outline of this chapter is as follows. Section 4.2 addresses the prob-
lem of counting the number of RLL sequences of a given length. Thereafter
we compute the asymptotic information rate, capacity, of RLL sequences
and then turn to the description of the statistical characteristics of maxen-
tropic RLL sequences. Of particular note is Section 4.4, which deals with
the properties of maxentropic RLL sequences. The remaining sections deal
with the properties of sequences with a variety of runlength constraints de-

1There is no consensus on the meaning of the letter ’I’. The origin of the invention in
relation to magnetic recording seems to be Phelps [283].

www.manaraa.com

54 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

veloped to counteract all kind of physical imperfections of the recording
channel. In the final section, we will discuss two-dimensional RLL codes.

4.2 Counting (dk) sequences

In this section we address the problem of counting the number of sequences
of a certain length which comply with given dk constraints. We start for
the sake of clerical convenience with the enumeration of (d) sequences. Let
Nd (n) denote the number of distinct (d) sequences of length n and define

Nd (n) = 0, n < 0,

Nd (0) = 1.
(4.1)

The number of (d) sequences of length n > 0 is found with the recursive
relations [319]

(i) Nd (n) = n+ 1, 1 ≤ n ≤ d+ 1,

(ii) Nd (n) = Nd (n− 1) +Nd (n− d− 1), n > d+ 1.
(4.2)

The proof of (4.2), taken from [319], is straightforward.

i. If n ≤ d + 1, a (d) sequence can contain only a single ’one’ (and there
are exactly n such sequences), or the sequence must be the all ’zero’
sequence (and there is only one such sequence).

ii. If n > d + 1, a (d) sequence can be built by one of the following proce-
dures:
-To build any (d) sequence of length n starting with a ’zero’, take the
concatenation of a ’zero’ and any (d) sequence of length n− 1. There
are Nd (n− 1) of such.
-Any (d) sequence of length n starting with a ’one’ can be constructed
by the concatenation of a ’one’ and d ’zero’s followed by any (d) se-
quence of length n− d− 1. There are Nd (n− d− 1) of such.

Table 4.2 lists the number of distinct (d) sequences as a function of the
sequence length n with the minimum runlength d as a parameter. When
d = 0, we simply find that N0(n) = 2N0(n − 1), or in other words, when
there is no restriction at all, the number of combinations doubles when a
bit is added, which is, of course, a well-known result. The numbers N1(n)
are

1, 2, 3, 5, 8, 13, . . . ,

where each number is the sum of its two predecessors. These numbers are
called Fibonacci numbers, after the Italian mathematician who discovered

www.manaraa.com

4.2. COUNTING (DK) SEQUENCES 55

that the number of rabbits multiplies in Fibonacci rhythm [331]. For d > 1,
the numbers Nd(n) are often called generalized Fibonacci numbers.

Table 4.2: Number of distinct (d) sequences as a function of the sequence
length n and the minimum runlength d as a parameter.

d \ n 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3 5 8 13 21 34 55 89 144 233 377 610 987
2 3 4 6 9 13 19 28 41 60 88 129 189 277
3 3 4 5 7 10 14 19 26 36 50 69 95 131
4 3 4 5 6 8 11 15 20 26 34 45 60 80
5 3 4 5 6 7 9 12 16 21 27 34 43 55

The number of (dk) sequences of length n can be found in a similar fashion.
Let N(n) denote the number of (dk) sequences of length n. (For the sake
of simplicity in notation no subscript is used in this case.) Define

N(n) = 0, n < 0,

N(0) = 1.
(4.3)

The number of (dk) sequences of length n is given by

N(n) = n+ 1, 1 ≤ n ≤ d+ 1,

N(n) = N(n− 1) +N(n− d− 1), d+ 1 ≤ n ≤ k,

N(n) = d+ k + 1− n+
k∑

i=d

N(n− i− 1), k < n ≤ d+ k,

N(n) =
k∑

i=d

N(n− i− 1), n > d+ k.

(4.4)

The proof of the above recursion relations is not interesting and therefore
omitted [319]. The k-limited case, d = 0, can be derived as a special case of
the general dk case. If Nk(n) denotes the number of (k) sequences of length
n, the following recursion relations can be written down:

Nk(n) = 2n, 0 < n ≤ k,

Nk(n) =
k+1∑

i=1

Nk(n− i), n > k.
(4.5)

It is easily seen that Nk=1(n), n = 1, 2, . . ., is the sequence of Fibonacci
numbers.

www.manaraa.com

56 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

4.3 Asymptotic information rate

An encoder translates arbitrary user (or source) information into, in this
particular instance, a sequence that satisfies given (dk) constraints. On the
average, m source symbols are translated into n channel symbols. What is
the maximum value of R = m/n that can be attained for some specified
values of the minimum and maximum runlength d and k?

The answer, as discussed in Chapter 2, was given by Shannon [296].
The maximum value of R that can be achieved is called the capacity. The
capacity, or asymptotic information rate, of (dk) sequences, denoted by
C(d, k), defined as the number of information bits per channel bit that can
maximally be carried by the (dk) sequences, on average, is governed by the
specified constraints and is given by

C(d, k) = lim
n→∞

1

n
log2Ndk(n). (4.6)

For notational convenience we restrict ourselves for the time being to (d) se-
quences. Note that the capacity formula (4.6) requires an explicit formula
of the number of sequences Nd(n) as a function of the sequence length n.
The desired expression is most easily obtained by solving the homogeneous
difference equation (4.2). According to (4.2) the number of (d) sequences is

Nd (n) = Nd (n− 1) +Nd (n− d− 1), n > d+ 1. (4.7)

We assume a solution of the form

Nd (n) = czn,

where c 6= 0. Substituting this expression into (4.7) results in

czn(1− z−1 − z−d−1) = 0.

We are interested in a non-trivial solution, Nd (n) 6= 0, and consequently, z
must be a root of the equation

1− z−1 − z−d−1 = 0,

or, equivalently,
zd+1 − zd = 1. (4.8)

This equation is usually referred to as the characteristic equation. Any z
that satisfies the characteristic equation will solve the difference equation.
For the case where (4.8) has d+1 distinct roots λi, i = 1, . . . , d+1, it can be
easily shown that from the linearity of (4.7) that the most general solution
for Nd (n) is of the form

Nd (n) =
d+1∑

i=1

aiλ
n
i , (4.9)

www.manaraa.com

4.3. ASYMPTOTIC INFORMATION RATE 57

where ai are constants, independent of n, to be chosen to meet the first
(d + 1) values of Nd (n). If λ = max{λi} is the largest (positive) real root
of (4.8), then for large values of n, (4.9) reduces to

Nd (n) ∝ λn, (4.10)

since the other terms in (4.9) become negligible by comparison. In (4.10), we
have thus found the general solution of (4.2) for sufficiently large values of n
and we infer that the number of possible (d) sequences grows exponentially
with n, when n is large. Applying definition (4.6), the asymptotic infor-
mation rate (or capacity) of d-constrained sequences, denoted by C(d,∞),
is

C(d,∞) = lim
n→∞

1

n
log2Nd (n) = log2 λ. (4.11)

This is the fundamental result that we need: The quantity C(d,∞) provides
the maximum rate possible of any implemented code given the minimum
runlength constraint d.

Example 4.1 Let d equal 1, then we obtain the characteristic equation

z2 − z − 1 = 0,

with solutions

λ1 =
1

2
(1 +

√
5) and λ2 =

1

2
(1−

√
5).

The general expression for N1(n) is then

N1(n) = a1

(
1 +

√
5

2

)n

+ a2

(
1−√

5

2

)n

, n ≥ 0. (4.12)

After some rearrangement, using the initial conditions N1(0) = 1 and N1(1) = 2,
we obtain, surprisingly, an explicit formula:

N1(n) =
1√
5

(
1 +

√
5

2

)n+2

− 1√
5

(
1−√

5

2

)n+2

=
1√
5
{gn+2 − (−g)−n−2}, n ≥ 0.

(4.13)

The above formula, discovered by de Moivre in 1718 and proved some years later
by Bernoulli, can be used to determine any Fibonacci number without having to
compute any other number in the Fibonacci sequence. The growth factor is λ =
g = (1 +

√
5)/2, and the capacity is

C(1,∞) = log2
1 +

√
5

2
' 0.694.

www.manaraa.com

58 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

Some further outcomes of computations, which are obtained by numer-
ical methods, are collected in Table 4.3.

Table 4.3: Capacity and density ratio Tmin versus minimum runlength d.

d C(d,∞) (d+ 1)C(d,∞)
1 0.694 1.388
2 0.551 1.654
3 0.465 1.860
4 0.406 2.028

The quantity Tmin, called density ratio, or packing density, is defined as

Tmin = (1 + d)C(d,∞). (4.14)

The density ratio expresses the minimum physical distance between con-
secutive transitions of an RLL sequence given the information content is
fixed. It can be seen from Table 4.3 that an increase of the density ratio
is obtained at the expense of decreased capacity C(d, k). The minimum
increment between any physical runlength is called the timing window or
detection window denoted by Tw. Clearly, Tw = C(d, k). We conclude that
sequences with a larger value of d, and thus a lower capacity C(d, k), are pe-
nalized by an increasingly difficult trade-off between the detection window
Tw and density ratio Tmin.

By rewriting (4.8), we obtain an interesting upper bound to Tw given a
Tmin. By definition we have λ = 2C(d,∞), so that using (4.8), we have

2−Tw + 2−Tmin = 1. (4.15)

The above relationship is plotted in Figure 4.1. As the rate of an imple-
mented code, R, is less or equal C(d,∞) the curve shows an upper bound
to Tmin = R(d+ 1) of any implemented RLL code. Only discrete points on
this curve are possible with maxentropic (d) constrained sequences . With
so-called ”RLL sequences with multiple spacings”, see Section 4.5.4, more
points on the curve are made possible. From (4.15) we easily derive for large
values of Tmin

Tw ln 2 ≈ 2−Tmin .

In similar vein to the case of d-constrained sequences, it is possible to
derive the capacity C(d, k) of (dk) sequences.

www.manaraa.com

4.3. ASYMPTOTIC INFORMATION RATE 59

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

d=0

1

2
3

Tw

Tmin

Figure 4.1: Bound to Tmin and window Tw. The circles indicate points
pertaining to (d) sequences.

Invoking recursion relation (4.4), we can write down the characteristic equa-
tion

z−(k+1) + z−k + · · ·+ z−(d+1) − 1 = 0,

or equivalently

zk+2 − zk+1 − zk−d+1 + 1 = 0. (4.16)

Alternatively, the theory developed in Chapter 2 can be used to derive the
capacity C(d, k) of (dk) sequences. Sequences that meet prescribed (dk)
constraints may be thought to be composed of phrases of length (duration)
j + 1, d ≤ j ≤ k, denoted by Tj+1, from the set of phrases

{10d, 10d+1, . . . , 10j, . . . , 10k},

where 0j stands for a sequence of j consecutive ’zero’s. As an immediate
consequence of (2.27), page 25, the characteristic equation of (dk) sequences
is (for finite k)

z−(k+1) + z−k + · · ·+ z−(d+1) − 1 = 0,

which is similar to the characteristic equation derived above. The charac-
teristic equation of k-constrained sequences is immediate:

zk+2 − 2zk+1 + 1 = 0 (4.17)

www.manaraa.com

60 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

We derive for sufficiently large k

λ ' 2(1− 1

2k+2
)

and

C(0, k) ' 1− 1

4 ln 2
2−k, k À 1.

Table 4.4 lists the capacity C(d, k) versus the parameters d and k.

Table 4.4: Capacity C(d, k) versus runlength parameters d and k.

k d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6
1 .6942
2 .8791 .4057
3 .9468 .5515 .2878
4 .9752 .6174 .4057 .2232
5 .9881 .6509 .4650 .3218 .1823
6 .9942 .6690 .4979 .3746 .2669 .1542
7 .9971 .6793 .5174 .4057 .3142 .2281 .1335
8 .9986 .6853 .5293 .4251 .3432 .2709 .1993
9 .9993 .6888 .5369 .4376 .3620 .2979 .2382
10 .9996 .6909 .5418 .4460 .3746 .3158 .2633
11 .9998 .6922 .5450 .4516 .3833 .3282 .2804
12 .9999 .6930 .5471 .4555 .3894 .3369 .2924
13 .9999 .6935 .5485 .4583 .3937 .3432 .3011
14 .9999 .6938 .5495 .4602 .3968 .3478 .3074
15 .9999 .6939 .5501 .4615 .3991 .3513 .3122
∞ 1.000 .6942 .5515 .4650 .4057 .3620 .3282

4.3.1 State-transition matrix description

There is an alternative useful technique to derive the channel capacity,
which is based on the representation of the (dk) constraints by a finite-state
sequential machine. Figure 4.2 illustrates a possible state-transition dia-
gram. There are (k+1) states which are denoted by {σ1, . . . , σk+1}. Trans-
mission of a ’zero’ takes the sequence from state σi to state σi+1. A ’one’
may be transmitted only when the machine occupies states σd+1, . . . , σk+1.
Any path through the state-transition diagram defines an allowed (dk) se-
quence. If r ’zero’s has been transmitted since the last ’one’, the machine
is in state r + 1. The adjacency, or connection, matrix, which gives the

www.manaraa.com

4.3. ASYMPTOTIC INFORMATION RATE 61

number of ways of going (in one step) from state σi to state σj, is given by
the (k + 1)× (k + 1) array D with entries dij, where

di1 = 1, i ≥ d+ 1,

dij = 1, j = i+ 1,

dij = 0, otherwise.

(4.18)

0 0 01 2 d d+1 0 0 0d+2 k k+1

1 1 1 1

Figure 4.2: State-transition diagram for a (dk) sequence. Transmission of
a ’zero’ takes the sequence from state σi to state σi+1, i ≤ k. A ’one’ may
be transmitted only when the machine occupies states σd+1, . . . , σk+1,
while a ’one’ must be produced if the machine is in state σk+1. The
machine returns to state σ1 after transition of a ’one’.

As an illustration, we have written down the connection matrix for the
(d, k) = (1, 3) constraints:

D =

0 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

 . (4.19)

A d-constrained channel can be modelled with d+1 states (see Figure 4.3.)
The connection matrix is given by the (d+1)× (d+1) array D with entries
dij, where

dij = 1, j = i+ 1,

dd+1,1 = dd+1,d+1 = 1,

dij = 0, otherwise.

(4.20)

The above representation is an example of the input-restricted noiseless
channel studied by Shannon (see Chapter 2). As shown in Chapter 2,
the finite-state machine model allows us to compute the capacity, and it is
also very helpful to compute the number of sequences that start and end in
given states. According to Theorem 2.1, page 22, the n-step state-transition
matrix has ij entries that give the number of distinct sequences from state
i to state j that are n bits long.

www.manaraa.com

62 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

0 0 0
0

1

1 2 d d+1

Figure 4.3: State-transition diagram for a (d) sequence. Only in state
σd+1 either a ’zero’ or a ’one’ may be emitted, in all other states a ’zero’
must be emitted.

Applying (2.19), page 22, we find that the capacity of a Markov source that
emits dk-constrained sequences is

C(d, k) = log2 λ,

where λ is the largest real root of the characteristic equation

det[D − zI] = 0, (4.21)

and I is the identity matrix. It is left for the reader as an exercise to
demonstrate that the latter equation coincides with (4.16), page 59.

4.3.2 Useful properties

It has been shown by Ashley & Siegel [13] that, save a trivial exception,
the capacity of binary (d, k)-constrained sequences is irrational. A similar
result was obtained by McLaughlin & Xie [242] for M -ary (d, k)-constrained
sequences. It is therefore clear that code implementations which, by neces-
sity, operate at rates of the form m/n, where m and n are integers, can
never attain 100% of the capacity.

Theorem 4.1 The capacity C(d, k) is irrational unless d = 0 and k = ∞.

Proof: If x is a root of the equation

xq + c1x
q−1 + · · ·+ cm = 0,

with integral coefficients, ci, then x is either integral or irrational [122]. As
the maximum real root λ of (4.16) has 1 < λ < 2, unless d = 0 and k = ∞,
we conclude that λ is irrational. It can be seen by inspection that λ is
not an r-root of two, and we therefore conclude that C(d, k) is irrational.
We conclude that codes can only be implemented with a rate, a rational
number, which is smaller than (and not equal to) the Shannon capacity.
As an example we have computed quotients R = m/n < C(d, k), m and n
integers, with decreasing relative distance to the Shannon capacity. Results

www.manaraa.com

4.3. ASYMPTOTIC INFORMATION RATE 63

are given in Table 4.5. It can be seen that relatively small codes can, in
principle, be constructed that can attain the Shannon capacity within a few
tenths of a percent. Whether and how this can be done in practice, will be
discussed in the various chapters to follow.

Table 4.5: Examples of rates of RLL codes, R < C(d, k), as a function
of the runlength parameters d and k.

d k R 1−R/C R 1−R/C R 1−R/C
1 7 2/3 0.01858 19/28 0.00105 36/53 0.00006
2 7 1/2 0.03357 15/29 0.00025
3 12 3/7 0.05921 4/9 0.02437 46/101 0.00022
5 12 1/3 0.01065 32/95 0.00024 63/187 0.00007

Ashley & Siegel [13, 10] derived a useful relation between the capacity of
(dk) sequences and (d) sequences, namely

C(d,∞) = C(d− 1, 2d− 1), d ≥ 1. (4.22)

To prove (4.22) is not difficult. The characteristic equations of d-constrained
and dk-constrained sequences are (see (4.8) and (4.16))

zd+1 − zd − 1 = 0,

and
zk+2 − zk+1 − zk−d+1 + 1 = 0.

By substituting d− 1 for d and 2d− 1 for k in the latter equation we obtain
the characteristic equation

z2d+1 − z2d − zd+1 + 1 = (zd − 1)(zd+1 − zd − 1) = 0.

The factor (zd − 1) has all its zeros on the unit circle. Therefore, we may
state that both equations have the same largest real root, which concludes
the proof of (4.22).

There is a simple relation between (0,1) and (1,∞) sequences. Let
{xi} = {x1, x2, . . . } be a (0,1) sequence. Logical inversion of all symbols of
{xi}, i.e. yi = x̄i, yields the sequence {yi} which, as can readily be seen, is a
(1,∞) sequence. A second relationship was found by Forsberg & Blake [86]

C(d, 2d) = C(d+ 1, 3d+ 1). (4.23)

The proof of the foregoing relationship (4.23) proceeds along the same lines
as the proof of (4.22), and is therefore omitted.

www.manaraa.com

64 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

Kashyap and Siegel [192] showed that repeatedly applying (4.22) and
(4.23) yields the chain of equalities

C(1, 2) = C(2, 4) = C(3, 7) = C(4,∞). (4.24)

They showed that no equalities other than those listed in (4.22)-(4.24) are
possible among the capacities C(d, k). Given a pair of dk-constrained sys-
tems of the same capacity, a question that naturally arises is whether there
exists a lossless finite-state encoder between the two dk-constrained systems
that is sliding-block decodable, i.e., can be decoded using finite memory.
The trivial translation between a (0,1) and (1,0)-constrained systems and
vice versa has been discussed above. Kashyap and Siegel showed that a
lossless translation from C(d, 2d) to C(d + 1, 3d + 1)-constrained systems
for d ≥ 1, is also possible. They also showed the nonexistence of certain
translations.

4.4 Maxentropic RLL sequences

To compute the statistical properties, such as runlength distribution, power
spectral density function, and so on, of sequences generated by implemented
codes can be a difficult task. It is, however, relatively simple, using the
theory developed in Chapter 2, to find the statistics of sequences emitted
by an ideal or maxentropic source. The output of an encoder working at
a rate close to channel capacity should, in some sense, approximate the
maxentropic Markov chain, which justifies the fact that the outcomes based
on maxentropic sequences may be used to approximate the characteristics
of implemented codes.

In a maxentropic RLL sequence, the runlength of length Ti has proba-
bility of occurrence [146, 356, 357]

Pr(Ti) = λ−i, i = d+ 1, . . . , k + 1, (4.25)

where λ is the largest real root of the characteristic equation (4.16). For
the proof of (4.25), we follow Howell [146] and Zehavi & Wolf [357].

To deduce the transition probabilities qij that maximize the entropy of
the (k + 1)-state runlength-limited source when the connection matrix D
is given, one must determine the right eigenvector v̂ = (v̂1, . . . , v̂N)

T that
satisfies (see Chapter 2)

Dv̂ = λv̂. (4.26)

The right eigenvector is v̂ =

(1, λ, λ2, · · · , λd, (λd+1−1), (λd+2−λ−1), . . . , (λk−λk−d−1−· · ·−λ−1))T .

www.manaraa.com

4.4. MAXENTROPIC RLL SEQUENCES 65

The joint probability qij of a transition from state i to j of the maxentropic
Markov source is

qij =
1

λ
dij

v̂j
v̂i
, i, j = 1, 2, . . . , k + 1. (4.27)

The matrix Q is stochastic, that is
∑

i

qij = 1. The probability πi associ-

ated with state σi is given by v̂iûi, where v̂ and û are the right and left
eigenvectors for D with eigenvalue λ, respectively, and

∑
πi = 1. The left

eigenvector û, is given by

û = (λk, λk−1, . . . , 1), (4.28)

and the stationary probability πi is

ρπi =

λk, 1 ≤ i ≤ d+ 1

λk −
i−1−d∑

j=1

λk−d−j d+ 2 ≤ i ≤ k + 1
(4.29)

where the normalization constant ρ is chosen to satisfy

∑
πi = 1.

Maxentropic RLL sequences are symmetrical with respect to reversal. Re-
versing the directions of all edges leads to a state-transition diagram whose
adjacency matrix is the transpose of D.

0 0 01 2 d d+1 0 0 0d+2 k k+1

1 1 1 1

Figure 4.4: Reversed state-transition diagram. The figure is the same as
Figure 4.2, but now the arrows are pointing in the opposite direction.

The reversed state-transition diagram describes the same set of runlength
parameters as the original, the reverse transition diagram is shown in Fig-
ure 4.4. The reversed diagram affords a simpler way to compute the run-
length distribution of a maxentropic RLL sequence than the original di-
agram. The probability of runlength g, d ≤ g ≤ k, ’zero’s is just the
probability q̃1g from state σ1 to state σg. Using the formulas q̃ij =

1
λ
ûj/ûi

and ûi = λk−i+1 from above, we obtain q̃1g = λ−g. The probability of a
phrase of length g consisting of a ’one’ followed by g−1 ’zero’s starting and
ending at the state labelled 1 is just λ−g.

www.manaraa.com

66 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

4.4.1 Spectrum of maxentropic RLL sequences

If a transmitter emits the phrases Tj independently with probability Pr(Tj),
then the power spectral density function of the corresponding RLL sequence
has been derived by Gallopoulos, Heegard & Siegel [110] and Pelchat & Geist
[279, 280]

H(ω) =
1

T̄ sin2 ω/2

1− |G(ω)|2
|1 +G(ω)|2 , (4.30)

where

G(ω) =
k+1∑

l=d+1

Pr(Tl)e
jωl (4.31)

and

T̄ =
k+1∑

l=d+1

lP r(Tl). (4.32)

An elegant proof, taken from Gallopoulos et al. [110], using generating func-
tions, is given in the Appendix of this chapter.

The runlengths of a maxentropic sequence follow, as earlier argued, a
truncated geometric distribution with parameter λ, or

Pr(Tl) = λ−l, l = d+ 1, d+ 2, . . . , k + 1, (4.33)

whence

T̄ =
k+1∑

l=d+1

lP r(Tl) =
k+1∑

l=d+1

lλ−l. (4.34)

Substitution of the distribution provides a straightforward method of de-
termining the spectrum (PSD) of maxentropic RLL sequences. Figure 4.5
depicts the spectra H(ω) of maxentropic (d) sequences for selected values
of the minimum runlength d. We may observe the following characteris-
tics: maxima occur at non-zero frequency, and the spectra exhibit a more
pronounced peak with increasing d. The energy in the low-frequency range
diminishes with decreasing minimum runlength d. We can establish the
following relationship for the power density at zero frequency:

H(0) =
1

T̄

k+1∑

l=d+1

(l − T̄)2Pr(Tl). (4.35)

www.manaraa.com

4.4. MAXENTROPIC RLL SEQUENCES 67

0.00 0.10 0.20 0.30 0.40 0.50
-10

-5

0

5

10

P
S

D
 (

dB
)

Frequency f

d=1

d=4

d=2

d=3

Figure 4.5: Power density function versus frequency of maxentropic
runlength-limited sequences. Both the frequency scale and the pulse
lengths of the RLL sequences are normalized in such a way that the user
bit rate of all sequences is fixed at 1 bit/s. The vertical axis is scaled for
unity total power in the bandwidth 0, ..., 1/C(d, k).

Figure 4.6: Power density function versus frequency of maxentropic dk-
constrained RLL sequences with d = 2 and selected k values.

www.manaraa.com

68 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

-4

-3

-2

-1

0

1

2

2 4 6 8 10 12 14 16 18 20
-4

-3

-2

-1

0

1

2

2 4 6 8 10 12 14 16 18 20
-4

-3

-2

-1

0

1

2

2 4 6 8 10 12 14 16 18 20
-4

-3

-2

-1

0

1

2

2 4 6 8 10 12 14 16 18 20

D
c-

co
nt

en
t (

dB
)

Max. runlength k

d=0 d=1 d=2 d=3

Figure 4.7: Dc-content of maxentropic dk-constrained RLL sequences
versus the maximum runlength k with d = 0, 1, 2, 3. The relationship is
plotted as a solid line. Note, however, that only a discrete set of points is
achievable.

The effects on the spectra of the maximum runlength can be observed in Fig-
ure 4.6. The figure depicts the spectrum of maxentropic (d = 2) sequences
with the maximum runlength k as a parameter. Figure 4.7 shows the power
density at zero frequency (dc-content) of maxentropic dk-constrained RLL
sequences versus k.

4.4.2 Comparison of results

In the next sections, a detailed description is offered on the design and
implementation of codes. It will be shown that, for moderate hardware,
encoders can be constructed that reach a code rate of up to 85–95% of the
theoretical maximum. This fact motivated us to compute the runlength
distribution and spectrum of two implemented codes and to compare them
with the outcomes obtained by the preceding theory of maxentropic se-
quences. The implemented codes to be considered are the MFM code (see
Chapter 5) with parameters d = 1 and k = 3 and the implemented (2, 7)
code (see later for more details).

The runlength distribution of the MFM code can be found by inspection
of its state-transition diagram, see Example 3.2, page 42. The distribution
of the implemented (2,7) code is taken from Howell [146]. Early spectral
results by computer simulations have been presented by Shaft [297]. The
runlength distributions of the two implemented codes are collected in Ta-

www.manaraa.com

4.4. MAXENTROPIC RLL SEQUENCES 69

bles 4.6 and 4.7. The distributions of the corresponding maxentropic run-
length constrained systems, discussed in the previous section, are included
for comparison purposes.

Table 4.6: Runlength distribution of MFM code and its maxentropic
counterpart.

Ti Pr(Ti) (implemented) Pr(Ti)(maxentropic)
2 0.500 0.466
3 0.333 0.318
4 0.167 0.217

Table 4.7: Runlength distribution of (2,7) code and its maxentropic coun-
terpart.

Ti Pr(Ti) (implemented) Pr(Ti)(maxentropic)
3 0.336 0.341
4 0.257 0.238
5 0.181 0.166
6 0.128 0.116
7 0.076 0.081
8 0.023 0.057

The spectra of MFM and the implemented (2,7) code are plotted in Fig-
ures 4.8 and 4.9 along with their maxentropic counterparts. The spectrum
of MFM is computed using the spectral analysis described in Example 3.2,
and the expression of the spectrum of the (2,7) code is taken from Gal-
lopoulos et al. [110]. We note a surprisingly good agreement (only a few dB
difference) with the spectra of their maxentropic counterparts in the lower
frequency range.

www.manaraa.com

70 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

0.00 0.10 0.20 0.30 0.40 0.50
-10

-5

0

5

10

P
S

D
 (

dB
)

maxentropic
MFM

Frequency f

Figure 4.8: Spectrum of MFM code along with its maxentropic counter-
part.

0.00 0.10 0.20 0.30 0.40 0.50
-10

-5

0

5

10

P
S

D
 (

dB
)

Frequency f

maxentropic

(2, 7) code

Figure 4.9: Spectrum of rate 1/2, (2,7) code along with its maxentropic
counterpart.

www.manaraa.com

4.5. OTHER RUNLENGTH CONSTRAINTS 71

4.5 Other runlength constraints

The theory of RLL sequences is not limited to (d, k) sequences. A variety
of other runlength constraints have been developed. This section provides
an overview of the most relevant examples.

4.5.1 Prefix-synchronized RLL sequences

In digital recorders, the coded information is commonly grouped in large
blocks, called frames. Each frame starts with a synchronization pattern,
or marker, used by the receiver to identify the frame boundaries and to
synchronize the decoder. In most applications, the sync pattern follows
the prescribed (d, k) constraints, and it is unique, that is, in the encoded
sequence, no block of information will agree with the sync pattern except
specifically transmitted at the beginnings of the frames. Usually, the above
arrangement is termed a prefix-synchronized format [162].

The prefix-synchronized format imposes an extra constraint on the en-
coded sequences, and will therefore result in a loss of capacity. There is
an obvious loss in capacity resulting from the fact that the sender is pe-
riodically transmitting sync patterns (and thus loses time to send ’useful’
user data), and there is a further loss in capacity since the sender is not
permitted to transmit patterns equal to the sync pattern during normal
transmission.

In 1960, frame synchronization of unconstrained binary sequences in a
general setting was addressed by Gilbert [111] (see also Stiffler [310], where
a detailed description is given of the synchronization issue). Gilbert showed,
among other things, that to each given frame length, there corresponds some
optimum length of the sync pattern. Gilbert’s work was extended, in 1978,
by Guibas and Odlyzko [120] who provided elegant combinatorial arguments
to establish closed form expressions for generating functions.

We commence, in Section 4.5.1, with a brief description of prefix syn-
chronized sequences, and proceed with the examination of the channel ca-
pacity. It will be shown that for certain sync patterns, called repetitive-free
sync patterns, the capacity can be formulated in a simple manner as it is
solely a function of the (d, k) parameters and the length of the sync pattern.
For each forbidden pattern and (d, k) constraints, methods for enumerating
constrained sequences are given.

Preliminaries

Sequences (with a leading ’one’) that meet prescribed (d, k) constraints
may be thought to be composed of phrases of length (duration) j + 1,
d ≤ j ≤ k, denoted by Tj+1, of the form 10j, where 0j stands for a se-
quence of j consecutive ’zeros’. The sync pattern is composed of p phrases,

www.manaraa.com

72 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

Ts1 , Ts2 , . . . , Tsp , and since it is assumed that the sync pattern obeys the
prescribed (d, k) constraints, we have si ∈ dk, where dk denotes the set
of integers {d + 1, . . . , k + 1}. The p-tuple s = (s1, . . . , sp) is used as a
shorthand notation to describe the sync pattern. For example, s = (2, 1,
3) refers to the sync pattern ’101100’. To keep notation to a minimum, we
will freely abuse notation by referring to s to represent both the p-tuple
(s1, . . . , sp) and the string 10s1−1 . . . 10sp−1, which should be clear from the
context. The length of the sync pattern, L(s), is defined by

L(s) =
p∑

i=1

si. (4.36)

It should be appreciated that as a result of the (d, k) constraints in force,
the sync pattern is preceded by at least d ’zeros’, and followed by a ’one’
and at least d ’zeros’. (Of course, unless sp = k + 1, the ’one’ starting the
phrase following the sync pattern must be a part of the binary pattern used
by the synchronization circuitry at the receiver.) It is therefore a matter of
debate to say that the sync pattern length is L(s) or L(s) + 2d + 1. The
adopted definition (4.36) is slightly more convenient, as we will see shortly.

Each frame of coded information consists of the prescribed sync pattern
s and a string of l cascaded phrases Ti1 , . . . , Til . The frame is organized
according to the format

(Ts1 , Ts2 , . . . , Tsp , Ti1 , Ti2 , . . . , Til). (4.37)

The total number of binary digits contained in a frame is prescribed and is
denoted by Lframe, that is,

Lframe =
p∑

j=1

sj +
l∑

j=1

ij = L(s) +
l∑

j=1

ij. (4.38)

The valid choices of Ti1 , . . . , Til are those for which no p consecutive phrases
taken from

(Ts2 , Ts3 , . . . , Tsp , Ti1 , Ti2 , . . . , Til , Ts1 , Ts2 , . . . , Tsp−1) (4.39)

agree with the sync pattern. Dictionaries satisfying this constraint are called
prefix-synchronized runlength-limited codes. It is relevant to enumerate the
number of distinct Lframe-tuples given the above conditions. Following this
enumeration problem, we will deal with a related problem, namely the com-
putation of the number of constrained sequences when the frame length
Lframe is allowed to become very large.

www.manaraa.com

4.5. OTHER RUNLENGTH CONSTRAINTS 73

Enumeration of sequences

In this section, we will address the problem of counting the number of
constrained sequences. Our methods can be viewed as an extension of those
of Guibas and Odlyzko [120] but can, in fact, be traced back to the work
of Schuetzenberger on semaphore codes ([295], Remark 3), see also Berstel
and Perrin, [28] II-7 and the notes following VI. Schuetzenberger attributes
these results to Von Mises and Feller [81].

First we develop some notation. Let F be the collection of all sequences
T of the form

T = (Ti1 , . . . , Tin), ij ∈ dk, j = 1, . . . , n, (4.40)

composed of n > p phrases of length

L(T) =
n∑

j=1

ij, (4.41)

with the properties that

(F1 :) (i1, . . . , ip) = (in−p+1, . . . , in) = (s1, . . . , sp), (4.42)

(F2 :) (ij, . . . , ij+p−1) 6= (s1, . . . , sp), j = 2, . . . , n− p. (4.43)

With the collection F , we associate the generating function f(z) defined by

f(z) =
∑

T∈F
z−L(T). (4.44)

We denote by fN the coefficient of z−N in f(z). Our aim will be to enu-
merate the number of distinct binary N -tuples in F , i.e., to determine the
numbers fN . Note that the number fLframe+L(s)

is just the number of ad-
missible frames. Following [120] we introduce two additional collections of
sequences G and H, defined as follows. The collection G consists of all
sequences T as in (4.40) composed of n ≥ p phrases such that

(G1 :) (i1, . . . , ip) = (s1, . . . , sp), (4.45)

(G2 :) (ij, . . . , ij+p−1) 6= (s1, . . . , sp), j = 2, . . . , n− p+ 1 (4.46)

and H consist of all sequences T as in (4.40) composed of n ≥ 0 phrases
such that

(H1 :) (ij, . . . , ij+p−1) 6= (s1, . . . , sp), j = 1, . . . , n− p+ 1. (4.47)

Note that by definition the empty sequence Λ is contained in H, s ∈ G,
and the three collections F , G, and H are mutually disjoint. With these

www.manaraa.com

74 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

collections G andH, we associate generating functions g(z) and h(z) defined
as

g(z) =
∑

T∈G
z−L(T) ; h(z) =

∑

T∈H
z−L(T). (4.48)

We now proceed to determine f(z), g(z), and h(z). The idea is to derive
relations between these generating functions from certain combinatorial re-
lations between the collections F , G, and H. To start with, we observe the
following. Let T = (Ti1 , . . . , Tin) be a sequence in G. Then the sequence
T ∗(Ti) = (Ti1 , . . . , Tin , Ti), i ∈ dk, is contained in F or in G\{s}, but not in
both since F and G are disjoint. On the other hand, if T = (Ti1 , . . . , Tin),
n ≥ p+ 1, is contained in F or in G\{s}, then the sequence (Ti1 , . . . , Tin−1)
is contained in G. We conclude that there is a one-to-one correspondence
between sequences

T ∗ (Ti), T ∈ G, i ∈ dk,

and sequences in
F ∪G\{s}.

From this observation, the following lemma is immediate.

Lemma 4.5.1.1 g(z)Pdk(z) = f(z) + g(z)− z−L(s),

where
Pdk(z) =

∑

i∈dk
z−L(Ti) =

∑

i∈dk
z−i. (4.49)

Proof: We have

g(z)Pdk(z) =
∑

T∈G
z−L(T).

∑

i∈dk
z−L(Ti)

=
∑

T∈G

∑

i∈dk
z−L(T∗(Ti))

=
∑

T̂∈F∪G,T̂ 6=s

z−L(T̂)

= f(z) + g(z)− z−L(s).

Similarly, we may derive a one-to-one correspondence between sequences

(Ti) ∗ T, T ∈ H, i ∈ dk,

and sequences in
H ∪G\{Λ},

(recall that G and H are disjoint), which leads to the next lemma.

Lemma 4.5.1.2 Pdk(z)h(z) = h(z) + g(z)− 1.

www.manaraa.com

4.5. OTHER RUNLENGTH CONSTRAINTS 75

Proof: Similar to the proof of Lemma 4.5.1.1.

Before we can write down the last relationship we require some definitions.
Define the (p− i)-tuples h(i) = (s1, . . . , sp−i) and t(i) = (si+1, . . . , sp), so h(i)

and t(i) consist of the p − i, i = 0, . . . , p − 1, first and last phrases of the
marker s, respectively. Let L(h(i)) be the length of the first p− i phrases of
s, or

L(h(i)) =
p−i∑

j=1

sj. (4.50)

The auto-correlation function of s, denoted by r, is a binary vector of length
p which is defined by ri = 0 if h(i) 6= t(i) and ri = 1 if h(i) = t(i). Obviously,
r0 = 1. An example may serve to explain why r is termed auto-correlation
function. Let s = (1, 2, 1, 2, 1), then Figure 4.10 exemplifies the process
of forming the auto-correlation function. If a marker tail coincides with a
marker head, we have ri = 1 else ri = 0.

i ri
1 2 1 2 1

1 1 2 1 2 0
2 1 2 1 1
3 1 2 0
4 1 1

Figure 4.10: Process of forming the auto-correlation function r.

If ri = 0, 1 ≤ i ≤ p − 1, that is, if no proper tail equals a proper head of
the marker, we say that the marker is repetitive free.

We are now in the position to prepare Lemma 4.5.1.3. To that end, let
i, 0 ≤ i ≤ p − 1, be such that ri = 1, and let T = (Ti1 , . . . , Tin) ∈ G. By
definition of G, ij = sj for j = 1, . . . , p. Since ri = 1, we have

(Ts1 , . . . , Tsi) ∗ T = (Ts1 , . . . , Tsi , Ts1 , . . . , Tsp , Tip+1 , . . . , Tin)

= (Ts1 , . . . , Tsi , Tsi+1
, . . . , Tsp , Tsp−i+1

, . . . , Tsp , Tip+1 , . . . , Tin)

= s ∗ T̂ ,

where T̂ = (Tsp−i+1
, . . . , Tsp , Tip+1 , . . . , Tn). Moreover, T̂ is a proper suffix of

T , hence T̂ ∈ H.
Conversely, let T̂ = (Ti1 , . . . , Tin) ∈ H. Consider the word U = s ∗ T̂ =

(Ui1 , . . . , Uin+p). Let j be the largest number such that Uij , . . . , Uij+p−1
)

= s. Note that, since T̂ ∈ H, 1 ≤ j ≤ p holds. From the way in which
j was defined, it follows that T := (Uij , . . . , Uin+p) ∈ G and moreover that

www.manaraa.com

76 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

i := j − 1 satisfies ri = 1. From the above we conclude that there exists a
one-to-one correspondence between sequences

(Ts1 , . . . , Tsi) ∗ T, 0 ≤ i ≤ p− 1, ri = 1, T ∈ G

and sequences

s ∗ T̂ , T̂ ∈ H.

From this observation, the following lemma easily follows.

Lemma 4.5.1.3 (1 + Fr(z))g(z) = z−L(s)h(z),

where the polynomial Fr(z) is

Fr(z) =
p−1∑

i=1

riz
L(h(i))−L(s). (4.51)

Proof: If ri = 1 then h(i) = t(i) = (si+1, . . . , sp), whence

L(h(i))− L(s) = −L(s1, . . . , si). (4.52)

Note also that

r0z
L(h(0))−L(s) = 1. (4.53)

Therefore,

(1 + Fr(z))g(z) =

∑
0≤i≤p−1

ri=1

z−L(s1,...,si)

∑

T∈G
z−L(T)

=
∑

0≤i≤p−1
ri=1

∑

T∈G
z−L((s1,...,si)∗T)

=
∑

T̂∈H
z−L(s∗T̂)

= z−L(s)h(z).

From the relations between f(z), g(z), and h(z) as described in the above
Lemmas, we may derive the following result.

Theorem 4.2

zL(s)f(z) =
Fr(z)(Pdk(z)− 1)− z−L(s)

Pdk(z)− 1− z−L(s) − (1− Pdk(z))Fr(z)
. (4.54)

www.manaraa.com

4.5. OTHER RUNLENGTH CONSTRAINTS 77

Proof: From Lemmas 4.5.1.2 and 4.5.1.3, an expression for g(z) not in-
volving h(z) may be derived. If this expression for g(z) is combined with
Lemma 4.5.1.1, the theorem follows easily.

Corollary 4.5.1.1The number of admissible frames of length N = Lframe is
the coefficient of z−N in the power series expression of the R.H.S. of (4.54).

It is immediate from Theorem 4.2, that the number of constrained sequences
is solely a function of the marker length L(s) if the marker is repetitive free.
Although Theorem 4.2 is useful for enumerating the number of constrained
sequences, it shows its greatest utility in investigating the asymptotic be-
havior of the number of constrained sequences when the sequence length is
allowed to become very large. This asymptotic behavior is directly related
to the (noiseless) capacity to be discussed in the ensuing section.

Capacity

The capacity C(d, k, s) of (d, k) sequences where the marker s is forbidden
can be found from the next theorem.

Theorem 4.3 C(d, k, s) = log2 λ, where λ is the largest real root of

Pdk(z)− z−L(s) − (1− Pdk(z))Fr(z) = 1. (4.55)

Proof: Follows from Theorem 4.2. Note that numerator and denominator
of the R.H.S. of (4.54) have no common factors.

An upper and lower bound to the capacity C(d, k, s) are given in the next
Corollary.

Corollary 4.5.1.2 For given sync pattern length L(s), log2 λl ≤ C(d, k, s) ≤
log2 λu, where λl is the largest real root of

Pdk(z)− z−L(s) = 1

and λu is the largest real root of

Pdk(z)− z−L(s) − (1− Pdk(z))
p−1∑

i=1

z−i(d+1) = 1.

The lower bound is attained if s is repetitive free and the upper bound is
attained if s is of the form (d+ 1, . . . , d+ 1).

Proof: Let

q(z) := Pdk(z)− 1− z−L(s) − (1− Pdk(z))Fr(z),

a(z) := Pdk(z)− 1− z−L(s),

www.manaraa.com

78 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

and

b(z) := Pdk(z)− 1− z−L(s) − (1− Pdk(z))
p−1∑

i=1

z−i(d+1).

We start with the lower bound. Since a(λl) = 0, we have

q(λl) = −(1− Pdk(λl))Fr(λl) = λ
−L(s)
l Fr(λl) ≥ 0.

Since q(z) = −1 for z → ∞, and since λ is the largest real zero of q(z), this
implies λl ≤ λ. Equality holds if r = (1, . . . , 0) that is, if the sync pattern
s is repetitive free.

Table 4.8: Capacity of the (1,3)-constrained channel with prefix sync s.

s C(1,3,s)
1010 .46496
10100 .45316
100010 .48673
100100 .50630
101010 .51737
1000100 .50902
1001010 .50902
1010010 .51606

The upper bound follows from a similar argument. Since 1 ≤ λl ≤ λ, we
have λ−1 ≤ 1. As L(s1, . . . , si) ≥ i(d+ 1), we have

Fr(λ) ≤
p−1∑

i=1

λ−L(s1,...,si) ≤
p−1∑

i=1

λ−i(d+1).

From q(λ) = 0, it follows that

(1− Pdk(λ))(1 + Fr(λ)) = −λ−L(s) < 0,

whence 1− Pdk(λ) < 0. Therefore,

b(λ) = (1− Pdk(λ))(Fr(λ)−
p−1∑

i=1

λ−i(d+1)) ≥ 0.

Since b(z) = −1 for z → ∞, and since λu is the largest real zero of b(z),
this implies λ ≤ λu. Table 4.8 shows C(1, 3, s) for selected sync patterns.
From the table we observe, for example, that ’100100’ is the shortest sync
pattern that admits of a code with rate 1:2. The shortest repetitive-free
sync patterns that admit a code rate > 1/2 are ’1000100’ and ’1001010’.

www.manaraa.com

4.5. OTHER RUNLENGTH CONSTRAINTS 79

4.5.2 Asymmetrical runlength constraints

In optical data storage, one is often faced with an asymmetry between writ-
ten and non-written data. With increasing information density the lengths
of the non-written areas diminish, but the written effects (marks) cannot
be made arbitrarily small. In practice, the minimum size of the recording
marks is subject to limits. This depends on material parameters of the in-
formation layer and on the properties of the optical components by which
the radiation beam is focused on the layer. Specifically in write-once and
erasable optical recording, there is a significant asymmetry between marks
and non-marks. Coding techniques based on asymmetrical RLL sequences
may be quite successful in combating the effects of intersymbol interference
[187, 69]. Other examples of asymmetrical runlength constraints, presented
by Moon & Brickner, and Cideciyan et al. are maximum transition run
(MTR) codes [58, 253, 254], where maximum runs of ’one’s and ’zero’s
should be limited, see Section 4.5.3, page 81. Asymmetrical runlength-
limited sequences are characterized by four parameters (d0, k0) and (d1, k1),
d0, d1 ≥ 0 and k0 > d0, k1 > d1, which describe the constraints on alternate
runlengths of ’zero’s and ’one’s, respectively. A permitted sequence is com-
posed of alternate phrases of the form 0i, i = d0 +1, d0 +2, . . . , k0 +1, and
1j, j = d1+1, d1+2, . . ., k1+1. We consider the time-multiplexing operation
which forms a composite signal by repetitively interleaving phrases from two
signal sets. Let one sequence be composed of phrases of durations tm ∈ So,
and let the second sequence have phrases of durations tj ∈ Se. The emitted,
interleaved, sequence is composed of phrases taken alternately from the first,
odd, sequence and the second, even, sequence. Reflection on the fact that
the interleaved sequence is composed of phrases of duration ti = tj + tm,
tm ∈ So, tj ∈ Se, will reveal that the characteristic equation is

∑

j∈Se

z−j

 ∑

m∈So

z−m

 = 1. (4.56)

It is a conceptually simple matter to extend the preceding results to a larger
number of multiplexed processes, and it is not further pursued here. From
(4.56), we obtain the characteristic equation

k0+1∑

i=d0+1

z−i

k1+1∑

j=d1+1

z−j

 = 1. (4.57)

We will concentrate for a while on sequences with a minimum runlength
constraint, i.e. k0 = k1 = ∞. Then (4.57) can be simplified in

zd0+d1+2 − 2zd0+d1+1 + zd0+d1 − 1 = 0. (4.58)

www.manaraa.com

80 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

As an immediate implication of the symmetry in d0 and d1 in the above
expression, we find for the capacity of the asymmetrical RLL sequences

Ca (d0, d1,∞,∞) = Ca (d0 + d1, 0,∞,∞), (4.59)

where Ca (d0, d1, k0, k1) denotes the capacity of asymmetrical RLL sequences.
Thus, the capacity of asymmetrical RLL sequences, Ca (d0, d1,∞,∞), is a
function of the sum of the two minimum runlength parameters only, and it
suffices to compute Ca (d0, 0,∞,∞) by solving the characteristic equation

zd0+2 − 2zd0+1 + zd0 − 1 = 0. (4.60)

Results of computations are collected in Table 4.9.

Table 4.9: Capacity of asymmetrical RLL sequences versus minimum
runlength.

d0 Ca(d0, 0,∞,∞)
1 0.8114
2 0.6942
3 0.6125
4 0.5515
5 0.5037

We can derive another useful relation with the following observation. Let
d0 = d1, that is, the restrictions on the runlengths of ’zero’s and ’one’s are
again symmetric, then from (4.59)

Ca (d0, d0,∞,∞) = Ca (2d0, 0,∞,∞), (4.61)

so that we obtain the following relation between the capacity of symmetrical,
C(d, k), and asymmetrical RLL sequences:

Ca (2d0, 0,∞,∞) = C(d0,∞). (4.62)

Katayama et al. [193, 194] presented a rate 8/15 asymmetrical d0 =
2, d1 = 1 runlength limited (RLL) code for dual-layered optical discs. The
code features a minimum mark length of three channel bits to maintain the
read-back signal power, and the minimum space length is two channel bits to
maintain the partial-response maximum likelihood (PRML) performance. It
has a better detection window size than EFMPlus, and the spectral density
in the low-frequency band is lower than that of the EFMPlus code (see
Chapter 11).

In the next section, we will discuss ’maximum transition run’ (MTR)
runlength constraints, which can be seen, for d = 0, as ’asymmetrical’
runlength constraints.

www.manaraa.com

4.5. OTHER RUNLENGTH CONSTRAINTS 81

4.5.3 MTR constraints

The Maximum Transition Run (MTR) codes, introduced by Moon & Brick-
ner [58, 253, 254], have d0 = d1 = 0, and an asymmetrical constraint on the
maximum runs of 0’s and 1’s. The maximum ’zero’ runlength constraint,
k0, is imposed, as in standard RLL constraints, for clock recovery, while the
’one’ runlength constraint, k1, is imposed to bound the maximum number
of consecutive transitions (i.e. consecutive 1’s). It has been shown by Moon
& Brickner [254] that removing those vexatious sequences leads to improved
robustness against additive noise. The capacity of channels with an asym-
metrical maximum runlength constraint, Ca(0, 0, k0, k1), is easily found by
invoking (4.57). The characteristic equation is

zk0+1 + zk1+1 + zk0+k1+4 − 2zk0+k1+3 = 1. (4.63)

Results of computations are collected in Table 4.10 for the case k1 = 1
and k0 = 1, . . . , 6. Note that Ca(0, 0, 1, 1) coincides with C(0, 1) listed in
Table 4.4, page 60. More results on asymmetrical constraints have been
presented by Menyennett & Ferriera [245]. Moon & Brickner [254, 255] pre-
sented a rate 6/7, (0,0,1,5) [254], and a rate 16/17, (0,0,2,10) was designed
by Nishiya et al. [262]. Van Wijngaarden & Soljanin presented a combina-
torial technique for constructing high-rate MTR-RLL codes [348].

Table 4.10: Capacity of asymmetrical RLL sequences versus maximum
’zero’ runlength k0. The maximum run of ’one’s, k1, equals 1.

k0 Ca(0, 0, k0, 1) k0 Ca(0, 0, k0, 1)
1 0.6942 4 0.8579
2 0.7947 5 0.8680
3 0.8376 6 0.8732

MTR (d, k) constraints, d > 0, have been advocated as they are said to im-
prove the detection quality. The MTR constraint limits the number of con-
secutive strings of the form 0d1, i.e. repetitive occurrence of the minimum
runlength are limited. In wireless infrared communications applications,
the MTR constraint is imposed as otherwise catastrophic receiver failure
under near-field may be induced [123, 132]. Implementations of these codes
usually have d = 1 and rate equal to 2/3. Rate 1/2, d = 2 codes have been
presented by Lee.

4.5.4 RLL sequences with multiple spacings

Funk [105] showed that the theory of RLL sequences, as described in the
previous sections, is unnecessarily narrow in scope. It precludes certain

www.manaraa.com

82 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

relevant coding possibilities, which could prove useful in particular devices.
The limitation is removed by introducing multiple-spaced RLL sequences,
where one further degree of freedom is added, namely the runlength spacing,
which is denoted by s. Let the parameters d and k again define the minimum
and maximum allowable runlength. The runlength/spacing constraints may
be expressed as follows: For integers d, k, and s, where k−d is a multiple of
s, the number of ’zero’s between successive ’one’s must be equal to d + is,
where 0 ≤ i ≤ (k − d)/s.

A sequence defined in this way is called an RLL sequence with multiple
spacings (RLL/MS). Such a sequence is characterized by the 3-tuple (d, k, s).
Note that for standard RLL sequences, defined in Section 4.1, we have s = 1.
Figure 4.11 illustrates a possible state-transition diagram.

0 0 01 2 3 4 0 0 05 6 7

1 1 1

Figure 4.11: State-transition diagram for a (d, k, s) = (2,2,6) sequence.

The capacity C(d, k, s) can simply be found by invoking Shannon’s capacity
formula (2.27), page 25:

C(d, k, s) = log λ, (4.64)

where λ is the largest root of the characteristic equation

(k−d)/s∑

i=0

z−(d+is+1) = 1. (4.65)

Note that if s and d+1 have a common factor, p, then k+1 is also divisible by
p. Such a sequence is therefore equivalent to a ((d+1−p)/p, (k+1−p)/p, s/p)
sequence. For k = ∞, we have

∞∑

i=0

z−(d+is+1) = z−(d+1)
∞∑

i=0

z−is =
1

1− z−s
z−(d+1). (4.66)

Thus the characteristic equation is (see also the characteristic equation,
(4.8), of regular (d) constrained sequences)

zd+1 − zd+1−s − 1 = 0. (4.67)

Table 4.11 shows results of computations. Within any s adjacent bit periods,
there is only one possible location for the next ’one’, given the location of
the last ’one’. The detection window for an RLL/MS sequence is therefore

www.manaraa.com

4.5. OTHER RUNLENGTH CONSTRAINTS 83

Tw = sC(d,∞, s), and the minimum time between two transitions, Tmin,
equals (d+ 1)C(d,∞, s).

Table 4.11: Capacity C(d,∞, s) for selected values of d and s.

d s C(d,∞, s)
0 2 0.6942
2 2 0.4057
3 2 0.3471
4 2 0.3063
0 3 0.5515
1 3 0.4057
2 3 0.3333

By rewriting (4.66), we obtain an interesting upper bound to Tw given a
Tmin, which is similar to (4.15).

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

d=0

1

2
3

Tw

Tmin

s=1
s=2

d=0

2

4

Figure 4.12: Relationship between Tmin and window Tw. The operating
points of various (d,∞, s) sequences are indicated.

Let
λ−s + λ−(d+1) = 1.

Then, by definition we have λ = 2C(d,∞,s), so that

2−Tw + 2−Tmin = 1.

www.manaraa.com

84 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

The above relationship is plotted in Figure 4.12. With (d) constrained
sequences only discrete points on this curve are possible. RLL sequences
with multiple spacing make it possible, by a proper choice of d and s, to
achieve more points on this curve. The author does not know whether
RLL/MS sequence have been used in practice.

4.5.5 (O,G/I) sequences

Partial response signaling in conjunction with maximum likelihood detec-
tion [57, 207, 208, 351] is a data detection technique commonly used in
magnetic recording. Special runlength constraints are needed to avoid vex-
atious sequences which could foil the detection circuitry. These constraints
are characterized by two parameters G and I. The parameter G stipu-
lates the maximum number of allowed ’zero’s between consecutive ’one’s,
while the parameter I stipulates the maximum number of ’zero’s between
’one’s in both the even and odd numbered positions of the sequence. The
G constraint, as the k constraint in dk sequences, is imposed to improve
the timing. The I constraint is used to limit the hardware requirements
of the detection circuitry. Marcus et al. [235] showed that it is possible to
represent (O,G/I) constraints by state-transition diagrams. To that end,
we define three parameters. The quantity g denotes the number of ’zero’s
since the last ’one’, and a and b denote the number of ’zero’s since the last
’one’ in the even and odd subsequence. It is immediate that

g(a, b) =

{
2a+ 1 if a < b,
2b if a ≥ b.

Each state in the state-transition diagram is labelled with 2-tuples (a, b),
where by definition 0 ≤ a, b ≤ I and g(a, b) ≤ G. A transition between the
states numbered by (a, b) to (b, a+ 1) (emitting a ’zero’) and (a, b) to (b, 0)
(emitting a ’one’) are easily attached.

Table 4.12: Capacity for selected values of G and I. Taken from [235].

G I capacity
4 4 0.9614
4 3 0.9395
3 6 0.9445
3 5 0.9415
3 4 0.9342
3 3 0.9157

By computing the maximum eigenvalue of the above state-transition matrix,

www.manaraa.com

4.6. WEAK CONSTRAINTS 85

we obtain the capacity of the (O,G/I) sequences. Results of computations
are listed in Table 4.12.

Examples of implementation of (O,G/I) constrained codes were given
by Marcus, Siegel & Patel [232], Eggenberger & Patel [73] and Fitzpatrick
& Knudson [84].

4.6 Weak constraints

Weakly constrained codes do not follow the letter of the law, as they pro-
duce sequences that violate the channel constraints with probability p. It is
argued that if the channel is not free of errors, it is pointless to feed the chan-
nel with perfectly constrained sequences. In the case of a dk-constrained
channel, violation of the d-constraint will very often lead to errors at the re-
ceiving site, but a violation of the k-constraint is usually harmless. Clearly,
the extra freedom offered by weak constraints will result in an increase of
the channel capacity, and possibly a higher code rate or a simpler code
construction.

In the context of high-rate multi-mode codes, there is a growing interest
in weakly constrained codes [155]. Multi-mode codes, as discussed in Chap-
ter 10, operate by choosing the ”best” word from a selection set of random
words. Even if the selection size is enormous, the encoder can never fully
guarantee the fulfillment of said channel constraints. There is always a non-
zero probability that the selection set does not contain a proper codeword
that satisfies the channel constraint.

4.6.1 Capacity of the weakly dk-constrained channel

In a weakly dk-constrained channel, (d, k) runlength conditions are dis-
obeyed with probability p, i.e. with probability p a runlength of length i is
transmitted that is either too short, i < d, or too long, i > k, [175]. The
capacity of the weakly dk-constrained channel will be denoted by C(d, k, p).
Assume further that the probability a runlength i, i > 0, is transmit-
ted equals pi. By definition we have

∑
i6∈dk pi = p and

∑
i∈dk pi = 1 − p,

where dk denotes the set of integers {d+ 1, . . . , k + 1}. Then, according to
Section 2.3.2, page 24, the capacity of the weakly dk-constrained channel,
C(d, k, p), is by definition the maximum of the entropy function, H(), given
by

H(d, k, p) = −
∑∞

i=1 pi log2 pi∑∞
i=1 ipi

, 0 ≤ pi ≤ 1, (4.68)

under the conditions that
∑

i∈dk
pi = 1− p,

∑

i6∈dk
pi = p.

www.manaraa.com

86 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

Let
Q(z) =

∑

i∈dk
z−i

and
R(z) =

∑

i6∈dk
z−i.

According to [175] the capacity, C(d, k, p), is given by the base-2 logarithm
of the root of

(1− p) log2Q(z) + p log2R(z) = p log2 p+ (1− p) log2(1− p). (4.69)

Results of computations for d-constrained channels are shown in Figure 4.13,
which shows the capacity C(d,∞, p) of weakly d-constrained sequences as
a function of the probability p that the sequences violate the d constraint.
This diagram is meant to show a few essential characteristics of the capacity
C(d,∞, p).

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ca
pa

ci
ty

(d
,k

,p
)

P

d=1

d=2
d=3

0

1

0 0.2 0.4 0.6 0.8 1

ca
pa

ci
ty

(d
,k

,p
)

P

d=1

d=2
d=3

0

1

0 0.4 0.6 0.8 1

ca
pa

ci
ty

(d
,k

,p
)

P

d=1

d=2
d=3

Figure 4.13: The capacity C(d,∞, p) of weakly d-constrained sequences
as a function of the probability p that the sequences violate the d con-
straint.

We can observe, for example, that the capacity curves reach a maximum
at C(d,∞, p′) = 1. At unity capacity the runlengths have the exponential
distribution pi = 2−i, i ≥ 1, and we therefore simply conclude that

p′ = 1−
k+1∑

i=d+1

2−i.

For d-constrained sequences we find

p′ = 1− 2−d.

www.manaraa.com

4.7. MULTI-LEVEL RLL SEQUENCES 87

In addition we can establish the relationship

C(d,∞, 1) = C(0, d− 1, 0), d ≥ 2.

Figure 4.14 deals with a more practical range of the violation probability
p. The diagram shows the relative capacity gain C(0, k, p)/C(0, k) − 1 of
k-constrained sequences. For the range of interest we find that the relative
redundancy reduction is of the same order of magnitude as p.

0.0001

0.0002

R
el

. c
ap

ac
ity

0
0 4 10

-5
Probability p

k=6
k=7

k=8 k=9

Figure 4.14: The relative capacity gain C(0, k, p)/C(0, k)−1 of weakly k-
constrained sequences as a function of the probability p that the sequences
violate the k-constraint.

4.7 Multi-level RLL Sequences

Conventional recording channels only accept binary symbols, and this book
follows the recording practice as it focuses on these specific sequences. There
are, however, a few recording products, where more than two levels are
used, so-called multi-level recording, and in this section we concentrate on
multi-level RLL or dk-constrained sequences. Assuming an M -level or M -
ary symbol alphabet A = {0, 1, . . . ,M − 1}, an M -ary dk-constrained, or

www.manaraa.com

88 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

(d, k;M)-constrained, sequence is one with at least d and at most k ’zero’s
between nonzero symbols. Binary dk-constrained sequences are M -ary dk-
constrained sequence with M = 2. Similarly, M -ary (d) sequences are
(d,∞;M)-constrained sequences.

As in the case of binary dk-constrained sequences, (d, k;M)-constrained
sequences can be thought to be generated by a (k + 1)-state finite-state
machine. The adjacency, or connection, matrix, which gives the number of
paths (words or symbols) going from state σi to state σj, is given by the
(k + 1)× (k + 1) array D with entries dij, where

di1 = M − 1, i ≥ d+ 1,

dij = 1, j = i+ 1,

dij = 0, otherwise.

(4.70)

A (d,∞;M)-constrained channel can be modelled by a finite-state machine
of d+1 states. The connection matrix is given by the (d+1)× (d+1) array
D with entries dij, where

dij = 1, j = i+ 1,

dd+1,1 = M − 1,

d1,1 = 1,

dij = 0, otherwise.

(4.71)

The capacity of M -ary dk-constrained, denoted by C(d, k;M), can now be
found. Applying (2.19), page 22, we find that the capacity of an M -ary
Markov source that emits dk-constrained sequences is

C(d, k;M) = log2 λ,

where λ is the largest real root of the characteristic equation

det[D − zI] = 0,

and I is the identity matrix.
We will now do some counting of M -ary (d) sequences. Let Nd (n;M)

denote the number of distinct M -ary (d) sequences of length n, and define

Nd (n;M) = 0, n < 0,

Nd (0;M) = 1.
(4.72)

The number of M -ary (d) sequences of length n > 0 is found with the
recursive relations [319]

Nd (n;M) = n(M − 1) + 1, 1 ≤ n ≤ d+ 1,

Nd (n;M) = Nd (n− 1;M) + (M − 1)Nd (n− d− 1;M), n > d+ 1.
(4.73)

www.manaraa.com

4.7. MULTI-LEVEL RLL SEQUENCES 89

The characteristic equation of M -ary (d) sequences is

zd+1 − zd − (M − 1) = 0. (4.74)

In a similar fashion, the characteristic equation of M -ary (dk) sequences is

zk+2 − zk+1 − (M − 1)zk−d+1 +M − 1 = 0. (4.75)

McLaughlin et al. [242] (see also Theorem 4.1, page 62, for the binary,
M = 2, case) showed that the capacity of M -ary (dk) sequences is irrational
for all values of M , d, and k < ∞. The capacity of M -ary (d) sequences is
rational when

M = 1 + 2md(2m − 1)

for all values of the integer m larger than 0. In the following example, we
will show some results for the case d = 1, k = ∞.

Example 4.2 Let d = 1, then N1 (0;M) = 1 and N1 (1;M) = M . N1 (n;M),
n > 1, is given by the simple first-order recursion equation

N1 (n;M) = N1 (n− 1;M) + (M − 1)N1 (n− 2;M), n > 1.

Then N1 (n;M) is given by

N1 (n;M) = a1λ
n
1 + a2λ

n
2 , n ≥ 0,

where

λ1,2 =
1∓√

1 + 4(M − 1)

2
,

and the two constants a1 and a2 can be found from N1 (0;M) = 1 = a1+a2, and
N1 (1;M) = M = a1λ1 + a2λ2. Let d = 1 and M = 1+ 2m(2m − 1), m > 0, then
the capacity is rational and equals m [242]. The number of constrained M -ary
(d = 1) sequences of length n is given by

N1 (n;M) = a12
mn + a2(1− 2m)n, n ≥ 0,

where a2 = (M − 2m)/(1− 2m+1) and a1 = 1− a2. For example, for m = 1, we
have M = 3, and we simply obtain

N1 (n; 3) =
1

3
(2n+2 + (−1)n+1) = round(2n+2/3), n ≥ 0.

We can easily check that C(1,∞; 3) = 1.

Note that in case the capacity is rational that 100% efficient codes are pos-
sible in theory. The remarkable thing is that indeed such implementations
of 100% efficient encoders can be found. A 2-state encoder, whose encoder
table is given in Table 4.13, of unity rate can achieve 100% efficiency for
the 3-level (d = 1)-constrained channel.

www.manaraa.com

90 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

Table 4.13: Codebook of two-state R = 1, d = 1, M = 3 code.

β h, g(σ1, β) h, g(σ2, β)
0 0, σ1 1, σ1

1 0, σ2 2, σ1

The encoded sequence can be decoded by observing two consecutive channel
symbols. McLaughlin [240] and Datta & McLaughlin [67, 68] have given
other examples of M -ary RLL codes.

4.8 Two-dimensional RLL constraints

In conventional recording systems, information is organized along tracks.
Interaction between neighboring tracks during writing and reading of the
information cannot be neglected. During reading, in particular when track-
ing, either dynamic or static, is not optimal, both the information track
itself plus part of the neighboring tracks are read, and a noisy phenomenon,
called crosstalk, or inter-track interference (ITI) may disturb the reading
process. Crosstalk is usually modelled as additive noise, and thus, essen-
tially, the recording process is considered to be one-dimensional. Advanced
coding systems that take into account inter-track interference, were devel-
oped by Soljanin & Georghiades [306].

It is expected that future mass data systems will show more of their
two-dimensional character: the track pitch will become smaller and smaller
relative to the reading-head dimensions, and, as a result, the recording pro-
cess has to be modelled as a two-dimensional process. An example of a type
of code, where the two-dimensional character of the medium is exploited to
increase the code rate was introduced by Marcellin & Weber [230]. They
introduced multi-track (d, k)-constrained binary codes. Such n-track codes
are extensions of regular (d, k) codes for use in multi-track systems. In an
n-track (d, k)-constrained binary code, the d constraint is required to be
satisfied on each track, but the k constraint is required to be satisfied only
by the bit-wise logical ”or” of n consecutive tracks. For example, assume
two parallel tracks, where the following sequences might be produced by a
2-track (d, k) code:

track 1 000010100010100
track 2 010000010000001.

Note that the d = 1 constraint is satisfied in each track, but that the k = 2
constraint is satisfied only in a joint manner –there are never more that
two consecutive occurrences of ’0’ on both tracks simultaneously. Although

www.manaraa.com

4.8. TWO-DIMENSIONAL RLL CONSTRAINTS 91

n-track codes can provide significant capacity increase over regular (d, k)
codes, they suffer from the fact that a single faulty track (as caused by
media defects, for example) may cause loss of synchronization and hence
loss of the data on all tracks. To overcome this flaw Swanson & Wolf [311]
introduced a class of codes, where a first track satisfies the regular (d, k)
constraint, while the k-constraint of the second track is satisfied in the
”joint” manner. Orcutt & Marcellin [267, 268] computed the capacity of
redundant multi-track (d, k)-constrained binary codes, which allow only r
tracks to be faulty at every time instant. Vasic computed capacity bounds
and spectral properties [327, 330, 328]. Further improvements of n-track
systems with faulty tracks were given by Kj & Marcellin [198].

In holographic recording, data is stored using optical means in the form
of two-dimensional binary patterns. In order to safeguard the reliability
of these patterns, certain channel constraints have been proposed. More
information on holographic memories and channel constraints can be found
in [126, 127].

Codes that take into account the two-dimensional character have been
investigated by several authors. Talyansky, Etzion & Roth [315] studied
efficient coding algorithms for two types of constraints on two-dimensional
binary arrays. The first constraint considered is that of the t-conservative
arrays, where each row and column of the array has at least t transitions.
The second constraint is that of two-dimensional DC-free arrays, where in
each row and each column the numbers of 1’s equal the number of 0’s.
Blaum, Siegel, Sincerbox & Vardy [35, 36, 326] disclosed a code which
eliminates long periodic stretches of contiguous light or dark regions in any
of the dimensions of the holographic medium such that interference between
adjacent images recorded in the same volume is effectively minimized.

Kato & Zeger [195] considered two-dimensional RLL constraints. A two-
dimensional binary pattern of 1’s and 0’s arranged in an m × n rectangle
is said to satisfy a two-dimensional (d, k) constraint if it satisfies a one-
dimensional (d, k)-constraint both horizontally and vertically. The (d, k)-
capacity is defined as

C(d, k) = lim
n,m→∞

1

mn
log2Nd,k(m,n), (4.76)

where Nd,k(m,n) denotes the number of valid m×n rectangles. In contrast
to the one-dimensional capacity, as discussed in the main part of this chap-
ter, there is little known about the two-dimensional capacity. It was shown
by Calkin & Wilf that C(d, k) is bounded as 0.587891 ≤ C(d, k) ≤ 0.588339
[46]. Bounds on C(d, k) have been derived by Kato & Zeger [195] and Siegel
& Wolf [303]. They showed, among others, that C(d, k) = 0 if and only if
k = d+ 1, d ≥ 1, k > d. Etzion [75] considered the coding question of how
to cascade two arrays with the same runlength constraints horizontally and

www.manaraa.com

92 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

vertically, in such a way that the runlength constraints will not be violated
at the array boundaries.

www.manaraa.com

4.9. APPENDIX: COMPUTATION OF THE SPECTRUM 93

4.9 Appendix: Computation of the spectrum

Let {yi}, yi =∈ {−1, 1} be a bipolar RLL sequence. For reasons of mathe-
matical convenience we define the sequence {xi} by

xi =
1

2
(yi − yi−1),

where, clearly xi =∈ {−1, 0,+1}. It should be appreciated that {xi} is not
a (dk) sequence, a (dk) sequence can be obtained by the process |xi|. Let
Hx(ω) and Hy(ω) denote the power spectral density functions of {xi} and
{yi}, respectively, then we obtain the relationship

Hy(ω) =
1

sin2 ω/2
Hx(ω). (4.77)

We apply the z-transform to obtain the spectrum of {xi} :

Hx(z) =
∞∑

m=−∞
Rx(m)zm, (4.78)

where Rx(m) = E{xjxj+m} denotes the mth auto-correlation coefficient.
By inspection, we find for the quantity

xjxj+m =

0, if xj or xj+m = 0
+1, if xj 6= 0, xj+m 6= 0,# phrases is even | run started
−1, if xj 6= 0, xj+m 6= 0,# phrases is odd | run started.

Thus

Rx(m) = E{xjxj+m}
= Pr(xj 6= 0){Pr(xj+m 6= 0, even)− Pr(xj+m 6= 0, odd)}.

Define

Φl (z) =
∞∑

j=1

zjPr(Length of l consecutive Ti is j|run started).

The coefficient of zj corresponds to the probability associated with all se-
quences of l runs of total length j. It follows that

∑

l=0,2,4,...

Φl (z)−
∑

l=1,3,...

Φl (z)

= 1 +
∞∑

j=1

zj{Pr(Length of even number of consecutive Ti is j|run started)

− Pr(Length of odd number of consecutive Ti is j|run started)}

= 1 +
∞∑

j=1

zj{Pr(xj = xj+m|xj 6= 0)− Pr(xj = −xj+m|xj 6= 0)}

= 1 +
∞∑

j=1

E{xjxj+m|xj 6= 0}zj.

www.manaraa.com

94 CHAPTER 4. RUNLENGTH-LIMITED SEQUENCES: THEORY

If the phrases Tj are randomly selected, we find

Φl (z) = [φ(z)]l,

where
φ(z) =

∑

i

Pr(Ti)z
i.

From (4.78), we find

Hx(z) = π0{
∑

l even

[Φl (z) + Φl (z
−1)]− ∑

l odd

[Φl (z) + Φl (z
−1)]− 1},

where

π0 = Pr{xi = 1} =
1∑

jPr(Tj)
.

From the power series identity

1

1− x2
=

∞∑

l=0

x2l

we find

Hx(z) = π0{
∑

l=0,2,...

([φ(z)]l + [φ(z−1)]l)− ∑

l=1,3,...

([φ(z)]l + [φ(z−1)]l)− 1}

= π0
1− φ(z)φ(z−1)

(1 + φ(z))(1 + φ(z−1))
.

After substitution of z = ejω and with a little rearrangement we obtain

Hx(ω) =
1

T̄

1− |G(ω)|2
|1 +G(ω)|2 ,

where

G(ω) =
k+1∑

l=d+1

Pr(Tl)e
jωl

and

T̄ =
1

π0

=
k+1∑

l=d+1

lP r(Tl).

www.manaraa.com

Chapter 5

RLL Block Codes

5.1 Introduction

One approach that has proved very successful for the conversion of arbitrary
source information into constrained sequences is the one constituted by
block codes. The source sequence is partitioned into blocks of length m,
called source words, and under the code rules such blocks are mapped onto
words of n channel symbols, called codewords. In this chapter we will deal
with block(-decodable) codes, where the observation of a single codeword
suffices to retrieve the original source word. Evidently, block-decodable
codes offer an advantageous solution relative to sliding-block codes since
they make it easier to preserve a particular mapping between the source
and the code symbols, and, obviously, error propagation is localized to one
decoded m-block. Block-decodable codes are highly suitable in conjunction
with Reed-Solomon error control codes. In the preferred embodiment of the
coding system, the codewords have a 1-1 correspondence with the elements
of the finite field GF (2m), thus enabling the construction of, for instance, a
Reed-Solomon code directly over the dk-constrained codewords.

A block code may be state dependent encodable, in which case the code-
word used to represent a given source block is a function of the channel
or encoder state (say, the history), or the code may be state independent.
State independence implies that codewords can be freely concatenated with-
out violating the sequence constraints. A set of such codewords is called
self-concatenable. The additional restriction of state-independency leads,
in general, to codes that are more complex in terms of hardware than
state-dependent codes for a given rate. State-independent decoding may be
achieved for any well-designed (d, k) block code, even for state-dependent
encoded codes, as will be indicated later.

We start with a description of (d, k)-constrained block codes, and present
some examples to clarify the general setting. Thereafter, we define dk se-
quences with an additional constraint on the number of leading and trailing

95

www.manaraa.com

96 CHAPTER 5. RLL BLOCK CODES

’zero’s. The additional constraints on the number of leading and trailing
’zero’s will make it possible to easily construct block codes. Special at-
tention is paid to high-rate (0, k) block codes. In the final section of this
chapter, codes are presented that are almost-block-decodable as decoding
of the sequence can be accomplished by observing (part of) the received
codeword plus a small part of the previous codeword. The Appendix de-
scribes, very briefly, so-called generating functions, an elegant method for
computing the number of constrained sequences.

5.2 RLL (d, k) block codes

To clarify the concept of block-decodable codes, we have written down a
simple illustrative case of a rate 3/5, (1,∞) block code. It is assumed
that the string of source bits, is partitioned into 3-bit source words. The
codeword assignment of Table 5.1 provides a straightforward block code,
which converts 3-bit source words into 5-bit codewords. The two left most
columns tabulate the eight possible source words along with their decimal
representation. We have enumerated all words of length four that comply
with the d = 1 constraint. There are exactly eight such words (see also
Table 4.2, page 55). The eight codewords, tabulated in the right hand
column, are found by adding one leading ’zero’ to the eight 4-bit words, so
that, as a result, the codewords can be freely cascaded without violating
the d = 1 constraint.

Table 5.1: Simple (d = 1) block code.

source output
0 000 00000
1 001 00001
2 010 00010
3 011 00100
4 100 00101
5 101 01000
6 110 01001
7 111 01010

The code rate is m/n = 3/5 < C(1,∞) ' 0.69, where C(1,∞) denotes,
see Chapter 4, the maximum rate possible for any code irrespective the
complexity of the encoder. The code efficiency, designated by η, expressed
as the quotient of code rate and capacity of the (d, k)-constrained channel

www.manaraa.com

5.2. RLL (D,K) BLOCK CODES 97

having the same runlength constraints, is

η =
R

C(d, k)
' 0.6

0.69
' 0.86. (5.1)

Thus the simple look-up code considered above is sufficiently powerful to
attain 86% of the rate that is maximally possible, which, actually, demon-
strates that good efficiencies are feasible with very simple constructions.
That this example is not untypical will be demonstrated in the remainder
of this chapter. The decoding of the received codewords can in fact be ef-
fected in a very simple fashion: the decoder skips the first symbol of each
received codeword and, using a look-up table, it maps the four remaining
codeword symbols onto the retrieved source word using the inverted as-
signment depicted in Table 5.1. In this example, the codewords have been
allotted to the source words in an arbitrary fashion and, evidently, other
assignments might be chosen instead. A different map may aim to simplify
the implementation of the look-up tables for encoding and decoding. The
case under study is so simple that implementation considerations are not
worth the effort, but when the codebook is larger, a detailed study might
save many logic gates. A maximum runlength constraint can be incorpo-
rated in the code rules in a straightforward manner. For instance, in the
(d = 1) code previously described, the first codeword symbol is preset to
’zero’. If, however, the last symbol of the preceding codeword and the sec-
ond symbol of the actual codeword to be conveyed are both ’zero’, then
the first codeword symbol can be set to ’one’ without violating the d = 1
channel constraint. This extra rule, which governs the selection of the first
symbol, the merging rule, can be implemented quite smoothly with some
extra hardware.

Table 5.2: Codebook of 2-state R = 3/5, (1,6) code.

i h, g(1,βi) h, g(2,βi)
0 00000, 2 10000, 2
1 00001, 1 10001, 1
2 00010, 2 10010, 2
3 00100, 2 10100, 2
4 00101, 1 10101, 1
5 01000, 2 01000, 2
6 01001, 1 01001, 1
7 01010, 2 01010, 2

It is readily conceded that with this additional ’merging’ rule the (1,∞)
code, presented in Table 5.1, turns into a (1,6) code. The code efficiency

www.manaraa.com

98 CHAPTER 5. RLL BLOCK CODES

is now, as can be verified with Table 4.4: η = 0.6/C(1, 6) ' 0.6/0.669
' 0.897. The process of decoding is exactly the same as for the simple (1,∞)
code, since the first bit, the ’merging’ bit, is redundant, and in decoding it
is skipped anyway. The (1,6) code is a good illustration of a code that uses
state-dependent encoding (the actual codeword transmitted depends on the
previous codeword) and state-independent decoding (the source word can be
retrieved by observing just a single codeword, that is, without knowledge of
previous or upcoming codewords or the channel state). Table 5.2 shows the
above rate 3/5, (1,6) code in the format of a finite-state machine encoder.
The proper operation of the encoder can easily be verified.

It is straightforward to generalize the preceding implementation example
to encoder constructions that generate sequences with an arbitrary value of
the minimum runlength. To that end, choose some appropriate codeword
length n. Write down all d-constrained words that start with d ’zero’s. The
number of codewords that meet the given runlength condition is Nd (n−d),
which can be computed with (4.2) or by using Table 4.2, page 55. A k
constraint can be usually imposed by a more ’clever’use of the merging bits.
The following subsection shows a worked example of a code called MFM.

5.2.1 Modified frequency modulation, MFM

Modified Frequency Modulation (MFM), a rate 1/2, (1,3) code, has proved
very popular from the viewpoint of simplicity and ease of implementation,
and has become a de facto industry standard in flexible and ’Winchester’-
technology disc drives. MFM is essentially a block code of length n = 2
with a simple merging rule in case the NRZI notation is employed. The
MFM encoding table is shown in Table 5.3.

Table 5.3: Coding rules MFM code.

Source Output
0 x0
1 01

The symbol indicated with ’x’ is set to ’zero’ if the preceding symbol is
’one’ else it is set to ’one’. It can be verified that this construction yields a
maximum runlength k = 3. MFM has high rate efficiency, η ' 0.5/0.5515,
or approximately 91 %. Note that the encoding table does not follow the
regular structure of a finite-state encoder. A graphical representation of
the finite-state machine underlying the MFM code is pictured in Figure 5.1.
The labelled edges emanating from a state define the encoding rule and the

www.manaraa.com

5.3. BLOCK CODES OF MINIMUM LENGTH 99

state in which an edge terminates indicates the state, or coding rule to use
next. State A represents the condition that the previous channel bit was a
’zero’, while state B indicates that the previous channel bit was a ’one’.

A B

0/10
1/01

0/00
1/01

Figure 5.1: Two-state transition diagram that describes the MFM code
in NRZI notation.

The finite-state encoder of MFM code discussed in Example 3.2, page 42,
has four states. The explanation is that the change-of-state encoder used to
translate a (dk) sequence into a runlength-limited (NRZ) sequence, accounts
for one memory element, or a doubling of the number of states. Decoding
of the MFM code is simply accomplished by discarding the redundant first
bit in each received 2-bit codeword. In this section, cascading of sequences
has been discussed in a rather heuristic fashion. The next section provides
a more structured and general setting of this subject.

5.3 Block codes of minimum length

As was already pointed out, see Chapter 4, the dk constraints can be rep-
resented by a finite-state machines of k + 1 channel states. Note that in
case in each state we have a sufficient number of outgoing codewords, that
this machines can be simply used as a finite-state encoder by tagging input
words to codewords. In this section, we discuss a method to modify this
finite-state machines machine into a finite-state encoder by deleting a cer-
tain number of states. The crucial problem is to find a subset of the original
channel states, referred to as principal states, which are used as the states
of an encoder.

Let the size of the code be M , that is M source words can be accommo-
dated. Then, from any principal state, there must emanate al leastM words
that terminate at the same or other principal states. The existence of such
a set of principal states is therefore a necessary condition for the existence
of a code with the specified number of source words. The condition implies
that from any principal state, i.e. encoder state, there is a sufficient, ≥ M ,
number of codewords that can be assigned to source words.

Franaszek [96] developed a recursive elimination technique for determin-
ing the existence of a set of principal states through operations on the state-
transition matrix. The subsequent procedure, taken from Franaszek [95],

www.manaraa.com

100 CHAPTER 5. RLL BLOCK CODES

can be used to decide whether there exists a set of principal states for the
specified parameters.

5.3.1 Franaszek’s recursive elimination algorithm

Let the codeword length n and the source word length m be given. The size
of the code is M = 2m. The specified channel constraints d and k define
a set of channel states denoted by Σ = {σi}. Let further Σ∗ be the set
of states that have not been eliminated and σi ∈ Σ∗ a state to be tested.
The number ψ(σi,Σ

∗) of (dk) sequences of length n permitted from σi and
terminating in a state σj ∈ Σ∗ is given by

ψ(σi,Σ
∗) =

∑

j∈V
[D]nij, V = {j : σj ∈ Σ∗}, (5.2)

where [D]nij denotes the entries of Dn. If ψ(σi,Σ
∗) < M , σi is eliminated

from Σ∗. Starting with Σ∗ = Σ, the algorithm is continued until either
all states have been eliminated, or till it goes through a complete cycle of
remaining states without further elimination. In the latter case, we know
that for any σi ∈ Σ∗,

ψ(σi,Σ
∗) ≥ M,

thus Σ∗ = Σp is the set of principal states. The above analysis which is due
to Franaszek, can be cast into a form that is of use later. We introduce an
approximate eigenvalue inequality to guide the construction [220].

Let v =(v1, . . . , vk+1)
T , vi ∈ {0, 1}, be a vector with binary elements.

A block code of the specified runlength constraints and parameters can be
ascertained if there is a binary vector v that satisfies

Dnv ≥ Mv, (5.3)

where (in)equality means componentwise (in)equality. In our context, the
vector v is usually called the approximate eigenvector. It is not hard to
see that the set {σj1 , · · · , σjL} for which vj1 = . . . = vjL = 1 is the set
of principal states. The following illustrations have been chosen to clarify
some of the points dealt with in the preceding sections.

Example 5.1 We examine here the implementation of a rate 1/2, (1,3) code.
Table 4.4 indicates that a code rate 1/2 represents 90% of the channel capacity.
Therefore, let m = 1 and n = 2. The 2-step finite-state machine, FSM, graphs
representing the (1,3) constraints are depicted in Figure 5.2.

www.manaraa.com

5.3. BLOCK CODES OF MINIMUM LENGTH 101

Figure 5.2: Two-step FSM representing the (1,3) constraints.

Clearly, the state-transition matrix D2 is

D2 =

1 0 1 0
1 1 0 1
1 1 0 0
0 1 0 0

 . (5.4)

Use of the recursive elimination algorithm indicates that state σ4 has to be deleted
(note that the row sum of row 4 is only one). We therefore eliminate row 4 and
column 4. The 3 × 3 submatrix so obtained has row sums which are exactly
2. Thus, the principal states are σ1, σ2, and σ3. The codewords available for
encoding associated with the principal states can be seen in Figure 5.3. States σ2
and σ3 are ”equivalent” as they have edges with the same labels going to the
same states, and they can be combined into a single state called state ”2/3”.
The resulting diagram is shown in Figure 5.4. It is now, in the final step of
the encoder construction, a matter of tagging the 2m = 2 source words to the
outgoing edges of each state.

Figure 5.3: Same as Figure 5.2 with state σ4 removed.

www.manaraa.com

102 CHAPTER 5. RLL BLOCK CODES

Figure 5.4: Two-state FSM after combining (merging) of states 2 and 3.

A two-state encoder, which is state-independently decodable, may be constructed
with the assignments given in the following table:

i h, g(1,βi) h, g(2,βi)

0 00, 2 10, 2
1 01, 1 01, 1

After some rearrangement, we obtain the following simplified coding rules:

source output

0 x0
1 01

A comparison with Table 5.3, page 98, or Figure 5.1 reveals that this is the MFM

code.

Example 5.2 Let d = 2 and k = ∞. The connection matrix D is given by

D =

0 1 0
0 0 1
1 0 1

 .

The capacity of the channel is (see Table 4.3, page 58)

C(2,∞) ' 0.551.

It is plausible to suppose that fairly short codes exist with a rate 1/2, and we
proceed to show that such a block code indeed exists. Invoking the recursive
elimination procedure previously described, one can prove that the shortest block
code with R = 1/2 has a codeword length of 14. As

D14 =

41 28 60
60 41 88
88 60 129

 ,

we conclude that all row sums ≥ 128, so that all three states are principal states.
To form a rate 7/14 code, we are free to choose any 128 of the possible sequences

www.manaraa.com

5.3. BLOCK CODES OF MINIMUM LENGTH 103

that leave a state and allocate them to the source words. In order to save in gate
count we must follow a systematic approach. This particular example, however,
is quite simple in this respect.

Perusal of the D14 matrix reveals that the lower-right element, [D]143,3, is

129 > 128. Thus only a single principal state, namely σ3, suffices for encod-

ing. Apparently, this particular code can be state-independently encoded (all

sequences start and end in state σ3) and decoded. After a quick look at the

state diagram in Figure 4.3, page 62, it will become apparent that any sequence

terminating in σ3 has at least d = 2 trailing ’zero’s. In retrospect, this outcome

is not surprising at all. When we take a look at Table 4.2, page 55, we notice

there are exactly 129 (d = 2) sequences of length 12. As described in the previous

section, the addition of two merging bits, which are preset to ’zero’, completes

the straightforward (alternative) design of a rate 7/(12+2), (2,∞) block code.

Clearly, the 14-bit codewords can be freely cascaded without offending the pre-

scribed runlength restrictions.

The shortest block codes of the specified rate for a selection of (d, k) com-
binations were computed by Franaszek [89] by invoking his recursive elimi-
nation procedure. Results of computations are collected in Table 5.4. The
parameter L = |Σp| denotes the minimum number of principal states.

Table 5.4: Shortest block codes of given bit-per-symbol values for a se-
lection of dk constraints. After Franaszek [89].

d k m n L η = R/C(d, k)
0 1 3 5 1 0.864
0 2 4 5 2 0.910
0 3 9 10 2 0.951
1 3 1 2 3 0.907
1 5 6 10 4 0.922
2 5 4 10 4 0.860
2 8 11 22 7 0.945
2 11 8 16 8 0.917
3 7 46 115 7 0.986
3 11 8 20 6 0.886

We also worked some examples of d = 1 and d = 2 codes. Tables 5.5 and
5.6 list the smallest codeword length possible for the specified rate and dk
constraints with block-decodable codes. As can be seen from the tables,
the codeword length required increases when the maximum runlength k is
reduced, or in other words, when the actual rate of the code approaches the
channel capacity for the specified conditions. We draw attention to the fact

www.manaraa.com

104 CHAPTER 5. RLL BLOCK CODES

that the minimum codeword lengths of the R = 2/3, (1,7) block code and
the R = 1/2, (2,7) block code are quite large, namely 33 and 34, respectively.
For these specific cases and many others, an alternative design, presented in
Chapter 7, affords much shorter word lengths with much lower complexity
and error propagation.

Table 5.5: Shortest block R = 2 / 3, (d = 1) code for a selection of k
constraints.

k n η = R/C(d, k)
11 18 0.963
10 21 0.965
9 21 0.968
8 24 0.973
7 33 0.981
6 165 0.996

Table 5.6: Shortest block R = 1/2, (d = 2) code for a selection of k
constraints.

k n η = R/C(d, k)
13 14 0.912
10 16 0.923
9 18 0.931
8 22 0.945
7 34 0.966

5.3.2 State-independent decoding

It can be verified that the MFM code dealt with in Example 5.1 may be
uniquely decoded without knowledge of the encoder state. The capability of
state-independent decoding is a notable virtue of a code. In some codes, the
states may be functions of the instantaneous symbol sequence sum. Here a
single error in detection may entail an unbounded string of decoding errors.
Runlength constraints are less catastrophic since by observing at most k
consecutive symbols of a dk-constrained sequence (d symbols are sufficient
for a d-constrained sequence) we can remove the channel (or encoder) state
ignorance at the receiver. Virtually all block codes possess the property of
state-independent decodability.

www.manaraa.com

5.3. BLOCK CODES OF MINIMUM LENGTH 105

The state-dependent translation of source words {βu} into codewords
{χiu} with the output function h(σi,βu) must have an unambiguous inverse
mapping h−1(χiu) = βu without reference to the encoder state σi. This
concept is best illustrated by a codebook lacking this property. Consider
a 3-state encoder and let W (σi), i = 1, 2, 3, denote the sets of codewords
emanating from the principal state σi. Let

W (σ1) = {χ1, χ2, χ3, χ5}
W (σ2) = {χ1, χ3, χ4, χ5}
W (σ3) = {χ2, χ3, χ4, χ5},

that is, four codewords leave each principal state. Table 5.7 shows a possible
assignment of four source and codewords h(σi,βu). It can be verified that
the given assignment does not admit state-independent decoding, and after
some trial and error we may conclude that, in the given example, it is not
possible to find any permutation of the source-channel representation that
can be decoded without knowledge, at the decoder side, of the encoder
state.

Table 5.7: Sets of codewords which do not admit state-independent de-
coding.

source h(σ1,βi) h(σ2,βi) h(σ3,βi)
β1 χ1 χ1 χ2

β2 χ2 χ4 χ4

β3 χ3 χ3 χ3

β4 χ5 χ5 χ5

Since coder and decoder complexity increases exponentially with codeword
length, it is usually advantageous to search for the shortest existing code
without regard to state independence and try to achieve state-independent
decodability by a proper allocation of source symbols to codewords. It
is obvious that state-independent decoding is always possible when there
are only two states. The next theorem, taken from Franaszek [89], asserts
that state-independent decoding may be achieved for any (d, k)-constrained
block code and any number of principal states.

Theorem 5.1 Let W (σi) denote the set of codewords of length n which take
the symbol sequence from state σi through a succession of allowable states.
Given a set of (principal) states Σ̂ = {σi} ⊂ Σ and a class of associated
word sets W (σi) leaving σi such that each word set contains at least 2m

words, it is possible to allot source words βu, u = 1, . . . , 2m, to the word
sets W (σi) so that there is a unique inverse mapping.

www.manaraa.com

106 CHAPTER 5. RLL BLOCK CODES

Proof: The state numbering follows the convention defined in Section 4.3.1,
page 60. A word χ that is allowable from at least one principal state, i.e.
which may be obtained from that principal state by an appropriate path
through the state-transition diagram, is not allowable from another state
either because there is a ’one’ too close to the beginning of the word, or
because there are too many ’zero’s before the first ’one’. Suppose χ is
permissible from state σv and σv+u, where u > 0, that is χ ∈ W (σv) and χ ∈
W (σv+u). Then the allowability from σv implies that the first ’one’ is not
too close to the beginning for χ to be allowable from σv+1, σv+2, . . . , σv+u−1.
The allowability of χ from σv+u implies that it does not have too many
’zero’s in the prefix to be allowable from σv+1, σv+2, . . . , σv+u−1. Thus,

χ ∈ W (σv) ∪ W (σv+u) ⇒ χ ∈ W (σv+j), j = 1, 2, . . . , u− 1.

Suppose that a source word βe has been assigned to χ in the set W (σv)
then it is possible to give χ the same assignment in W (σv+1), . . . ,W (σv+u),
in other words, if h(σv,βe) = χ then it is possible to allocate h(σv+1,βe),
. . . , h(σv+u,βe) = χ. Thus the inverse function is unique and independent
of the encoder state, as was to be proved.

5.4 Block codes based on (dklr) sequences

The construction technique discussed in the previous section has the draw-
back that it requires a (large) number of look-up tables for encoding. In
principle, the number of required look-up tables equals the number of prin-
cipal states, which, if the maximum runlength k is large, can be quite pro-
hibitive. In Section 5.5.1, it will be shown that the number of look-up tables
can be reduced to a value significantly less than k. Two look-up table are
required for popular values of d less than three. An alternative method,
where only a single look-up table is needed was first described by Tang &
Bahl in their pioneering paper [319]. They presented a method of inserting
merging sequences of length β = 2d between adjacent (dk) sequences so
that the dk constraints are not violated. Evidently the method requires
only one look-up table for generating the (dk) sequences. Some additional
logic hardware is needed to determine the merging bits used to cascade
the (dk) sequences. The following systematic construction technique, taken
from Beenker & Immink [25], employing (dklr) is a generalization of that
idea. The advantage is that only β = d merging bits are required. We start
with the definition of (dklr) sequences.

A (dklr) sequence is a (dk) sequence with additional constraints on the
number of leading and trailing ’zero’s:

1. l constraint - the number of consecutive leading ’zero’s of the sequence,
that is, the number of ’zeros’ preceding the first ’one’, is at most l.

www.manaraa.com

5.4. BLOCK CODES BASED ON (DKLR) SEQUENCES 107

2. r constraint - the number of consecutive trailing ’zero’s of the se-
quence, that is, the number of ’zero’s succeeding the last ’one’, is at
most r.

The additional constraints on the number of leading and trailing ’zero’s
allow the design of more efficient block codes than is possible with the
technique of Tang & Bahl [319].

The number of distinct (dklr) sequences of length n, n > k, k ≥ 2d,
denoted by Ndklr(n), can be found by adding the appropriate entries of
the matrix Dn. To this end, assume that the finite-state machine, see
Figure 4.2, page 61, occupies state σu, 1 ≤ u ≤ k + 1, at the start of an
n-sequence. Then the number of starting ’zero’s is at most k+1−u and at
least max {0, d+ 1− u}. If the n-sequence terminates in σv, 1 ≤ v ≤ k + 1,
then the n-sequence has v−1 trailing ’zero’s. ThusNdklr(n), l ≤ k−d, equals
the number of distinct sequences that emanate from σk+1−l and terminate
in one of the states σ1, . . . , σr+1. Similarly, Ndklr(n), l > k − d, equals the
number of sequences that start in σk+1−l or σ2k+2−l−d and terminate in one
of the states σ1, . . . , σr+1. In summary,

Ndklr(n) =

r+1∑

j=1

[D]nk+1−l,j, l ≤ k − d, n > k,

r+1∑

j=1

[D]nk+1−l,j + [D]n2k+2−l−d,j, l > k − d, n > k.

(5.5)

In the next section, an alternative method is given to compute the number
of (dklr) sequences using the theory of generating functions.

5.4.1 Generating functions

An elegant way to compute the number of (dklr) sequences is provided by
the theory of generating functions as discussed in Section 5.9. We first
compute the generating function of the number of (dk) sequences that start
and end with a ’one’. To that end, let

T (x) =
∞∑

m=0

cmx
m

denote the generating function of (dk) sequences that start and end with a
’one’, i.e. the coefficient cm equals the number of dk sequences of length m
that start and end with a ’one’. As such a (dk) sequence can be seen to be
built up of objects, in this context called phrases, of length d+ 1 to k + 1,
generating functions can be used to enumerate the number of sequences.
For the (d, k) sequence we start with a ’one’ and then choose phrases from
the set

{0d1, 0d+11, . . . , 0k1}.

www.manaraa.com

108 CHAPTER 5. RLL BLOCK CODES

We now get the generating function

T (x) = x(1 + P (x) + P (x)2 + P (x)3 + · · ·),

where P (x) = xd+1 + · · ·+ xk+1. By rewriting this expression we get

T (x) =
q(x)

p(x)
=

x

1− (xd+1 + · · ·+ xk+1)
=

x(1− x)

1− x− xd+1 + xk+2
. (5.6)

Note that p(1/x) is the characteristic equation (4.16). In order to compute
the number of (dklr) sequences, we must allow that the number of ’zero’s
at the beginning and end of the word lies between 0 and l and 0 and r,
respectively. A (dklr) sequence looks like

0u1 . . . 10v,

where 0 ≤ u ≤ l and 0 ≤ v ≤ r. The generating function of the middle part
starting and ending with a ’one’ equals T (x). The ’zero’s at the beginning
and end of the sequence have generating functions

Tl(x) = 1 + x+ · · ·+ xl =
1− xl+1

1− x

and

Tr(x) =
1− xr+1

1− x
.

After multiplying T (x) with Tl(x) and Tr(x), respectively, we find the gen-
erating function of (dklr) sequences, denoted by Tdklr(x),

Tdklr(x) =
x(1− xl+1)(1− xr+1)

(1− x)(1− x− xd+1 + xk+2)
. (5.7)

With an algebraic manipulation package it is now very easy to compute the
number of (dklr) sequences. The generating function of (d) sequences is

Td(x) =
1

xd(1− x− xd)
.

5.4.2 Constructions 1 and 2

As already explained, (dklr) sequences cannot, in general, be cascaded with-
out violating the dk constraint at the codeword boundaries. Inserting a
number, β, of merging bits between adjoining (dklr)-sequences makes it
possible to preserve the d and k constraints for the cascaded output se-
quence. Tang & Bahl [319] showed in their pioneering paper that (dk)
sequences require β = d + 2, d > 0, merging bits, whereas only β = d

www.manaraa.com

5.4. BLOCK CODES BASED ON (DKLR) SEQUENCES 109

merging bits are required for (dklr) sequences, provided that l and r are
suitably chosen. We shall next describe two constructions of block codes
with merging rules of mounting complexity and efficiency.

Construction 1: Choose d, k, r, l, and n′ such that r + l ≤ k − d and let
β = d. Then the (dklr) sequences of length n′ can be freely cascaded with-
out violating the specified d and k constraints if the β merging bits are all
set to ’zero’. In other words, the code is self-concatenable. For symmetry
reasons we may expect that the number of (dklr) sequences is maximized
if the ’zero’s are equally distributed between the beginning and the end of
the words, that is, if we choose l = b(k − d)/2c and r = k − d− l. A proof
of this condition was given by Blake [34].

Example 5.3 The Group-Coded Recording (GCR) code, also known as ’4/5

code’, was used in a large variety of magnetic tape products. In the GCR code,

four user bits are uniquely represented by five channel bits. The constraints placed

upon the code are d = 0 and k = 2. According to Table 4.4, page 60, the capacity

of a sequence with no runs of more than two ’zero’s is C(0, 2) ' 0.879. Thus the

efficiency of the GCR code is η = 91%. From the 2n = 32 possible combinations

of n = 5 bits, 15 are eliminated because of the (d = 0, k = 2, l = 1, r = 1)

constraints, leaving 17. One can be discarded to produce the 16 unique codewords

required. The one left can then be used as a special pattern, for checking or error

detection, as it obeys the specified constraints. A simple look-up table is used

for encoding and decoding.

The rate-ineffectiveness of the d merging bits which are all set to ’zero’ can
be improved by the following construction provided the maximum runlength
parameter k is not too small, i.e., k ≥ 2d. Generalizations for small values
of k have been presented by Weber & Abdel-Khaffar [338].

Construction 2: Choose d, k, and n′ such that k ≥ 2d and d ≥ 1. Let
r = l = k−d and β = d. Then the (dklr) sequences can be cascaded without
violating the specified dk constraints if the β merging bits are governed by
the following rules, which can easily be implemented. Let an n′-sequence
end with a run of s ’0’s (s ≤ r) while the next sequence starts with t, t ≤ l,
leading ’0’s. Table 5.8 shows the merging rules for the β = d merging bits.
In order to demonstrate the efficiency of the codes based on Constructions 1
and 2 we will consider some specific cases. For m = 8 and d = 1, . . . , 4 and
k = 2d, . . . , 20 we have selected n = n′ + β in such a way that the code
rate R was maximized. Tables 5.9 and 5.10 give the results for m = 8 and
d = 1, . . . , 4. In order to limit the length of the tables, we have restricted k
and n to those values which maximize the code rate R. We note that rates
up to 95% of the channel capacity C(d, k) can be attained.

www.manaraa.com

110 CHAPTER 5. RLL BLOCK CODES

Table 5.8: Merging rules of (dklr) sequences.

s, t Merging bits
s+ t+ d ≤ k 0d

s+ t+ d > k
if s ≤ d 0d−s10s−1

if s > d 10d−1

Table 5.9: Block codes based on Construction 1, m = 8.

d k n′ R η = R/C(d, k)
1 7 12 8/13 0.91
2 17 14 8/16 0.91
3 14 17 8/20 0.87
4 18 19 8/23 0.87

It may be noticed from the tables that on average there is a slight difference
in the code efficiencies obtained by Constructions 1 and 2, approximately
3 % in favor of Construction 2. With Franaszek’s recursive elimination
technique it can be verified that the codes presented in Table 5.10 are of
minimum length. Clearly, the longer the codewords, the closer the coding
efficiency is to unity. In Section 6.3.3, page 147, we will analyze how close
the rate of codes based on the above constructions can approach channel
capacity, C(d, k), when the codeword length n is allowed to be extremely
large. That analysis shows that a codeword length n of approximately
n = 256 suffices to approach capacity to within 0.1-0.5%. In the next
section, we will discuss optimal block codes, which maximize the number of
messages M (not necessarily a power of two) that can be transmitted.

Table 5.10: Block codes based on Construction 2, m = 8.

d k n′ R η = R/C(d, k)
1 5 12 8/13 0.95
2 10 14 8/16 0.92
3 10 17 8/20 0.90
4 12 19 8/23 0.90

www.manaraa.com

5.5. OPTIMAL BLOCK CODES 111

5.5 Optimal block codes

Franaszek’s recursive elimination procedure, see Section 5.3.1, makes it pos-
sible to discern whether a (d, k)-constrained block code is possible for the
given parameters n and code size M = 2m. For certain applications it is
of interest to establish the optimal block code, where the optimal code is
the one that maximizes the number of messages (code size) M (not neces-
sarily a power of two) that can be transmitted. By invoking the recursive
elimination procedure it is straightforward to find the optimum M . Choose
M = 1. Apply Franaszek’s procedure. If such a code is possible, increase M
by one and apply this procedure recursively until we reach an M ′ for which
a code is not possible. Then M = M ′−1 is optimal and the set of principal
states found for M ′ − 1 is called the optimal set of principal states.

Gu & Fuja [119] and Tjalkens [322] showed that such a recursive search
technique is not required as we can immediately write down the optimal
M and the optimal set of principal states. For 0 < d < k, and word
length n ≥ d, the optimal M equals the number of (dk) sequences having at
least d leading and at most k− 1 trailing ’0’s, i.e., M equals the number of
(d, k, k−d, k−1) sequences of length n−d. The optimal set of principal states
is Σ \ {σk+1}. Chaichanavong & Marcus [56] have presented a more general
approach including other constraints. The next subsection will detail Gu &
Fuja’s findings.

5.5.1 Set-concatenation

Gu & Fuja considered the following problem, which is of great relevance for
block-decodable dk-constrained codes.

Let Si be a set of disjoint codewords that obey the channel constraint,
and let S be a collection of disjoint sets Si. Each source word, mi, is
represented by a member of the set of codewords Si. A collection S is said
to be set-concatenable with respect to the constraint at hand if in any set
Si we can select (at least) one codeword that can be cascaded with any
codeword in the collection S of sets Sj without violating the prescribed
constraint.

Example 5.4 Consider the (d = 3, k = 6) code with codeword length n = 10

given by the collection S = {S0, . . . , S8}, where

S0 = {0000001000, 0100000010, 0010000001},
S1 = {0000010000, 0100000100},
S2 = {0000010001, 0100001000},
S3 = {0000100000, 0100010000},
S4 = {0000100001, 0100010001},
S5 = {0000100010, 1000000100},

www.manaraa.com

112 CHAPTER 5. RLL BLOCK CODES

S6 = {0001000001, 1000001000},
S7 = {0001000010, 1000010000},
S8 = {0001000100, 1000010001}.

Perusal of the above example will verify that this collection has the set-concaten-

ability property. By deleting one set we obtain eight sets, so that it is possible

to construct a rate 3/10, (3,6) code.

Interesting questions are now: How do we construct such a collection S,
and how do we maximize the size of the collection. Essentially, the answers
to these questions were given in the previous sections. Use Franaszek’s re-
cursive elimination procedure to find the set of principal states and construct
a state-independently decodable code. The collection S is easily obtained
by reading the codewords from the codebook constructed. As such there is
nothing new under the sun.

Gu & Fuja proved by construction that the maximum size of the collec-
tion is the number of dk-constrained words that start with at least d 0s and
end with at most k − 1 0s. They also showed that the size of the set Si is
at most ⌊

k − 2

k − d+ 1

⌋
+ 2.

Therefore it is possible to implement an encoder with a look-up table con-
sisting of at most b(k−2)/(k−d+1)c+2 representations of the source word.
It should be noted that the maximum size of any Si does (in general) not
equal the number of states required to implement the encoder by a formal
finite-state encoder. Given such a finite-state encoder, we can, given the
current encoder state, look up the correct representation from the set. Ded-
icated electronics can be designed for this purpose. For the cases of practical
interest, where d = 1 and d = 2, we immediately conclude that at most two
representations are required. The important cases, where d = 1 and d = 2
will be described in detail in the next two examples. For values of d ≥ 3,
similar collections can be constructed. They are not reproduced here, and
the interested reader is referred to [119]. We start with an example where
d = 1.

Example 5.5 Consider the case d = 1 and let C be the set of d = 1, k con-

strained codewords, 2 ≤ k ≤ ∞, that start with at least d = 1 and end with at

most k − 1 ’zero’s. Construct for each c ∈ C a collection S of sets as follows:

Si = c if c = {01b} and Si = {10b, 00b}, where b represents the last n − 2 bits

of the codeword c ∈ C. As the number of words ’00b’ ≤ the number of words

’10b’ we conclude that the size of the code is indeed equal to the number of

dk-constrained words that start with at least d = 1 ’zero’s and end with at most

k − 1 ’zero’s.

www.manaraa.com

5.6. EXAMPLES OF RLL (D,K) BLOCK CODES 113

In the next example, details of d = 2 codes will be discussed.

Example 5.6 Consider the case d = 2 and let C be the set of d = 2, k con-

strained codewords, 2 ≤ k ≤ ∞, that start with at least d = 2 and end with at

most k− 1 ’zero’s. Construct for each c ∈ C a collection S of sets as follows: Let

Si = {00a, 01b} or Si = {00a, 10b}, where a and b represent the last n− 2 bits of

the codeword c ∈ C. As the number of words ’00b’ ≤ the number of words ’10b’

plus the number of word ’01b’, we conclude that the size of the code equals the

number of dk-constrained words that start with at least d = 2 ’zero’s and end

with at most k − 1 ’zero’s.

It is of interest to compare Gu & Fuja’s method with Construction 1 and
2. Construction 2, see Section 5.4.2, page 5.4.2, uses (d, k, l = k − d, r =
k−d) sequences of length n−d that are merged with a simple merging rule.
For k ≥ 2d, Construction 2 is equivalent to constructing a set-concatenable
collection. This construction, as can be verified, is optimal for d = 1, but is
sub-optimal for d > 1. For instance, when we apply Construction 2 for the
parameters (d = 3, k = 6) and n = 10, we obtain the collection

S0 = {0000001000, 1000001000, 0100001000, 0010001000},
S1 = {0000010001, 0000100001, 0100010001},
S3 = {0000100001, 1000100001},
S4 = {0001000001},
S5 = {0001000010},
S6 = {0001000100}.
Clearly, this code has a lower rate than the one discussed in Example 5.4.
The construction method of Gu & Fuja does not provide ’better’ codes than
Franaszek’s recursive elimination method. The assignment of codewords
that allows state-independent decoding, in the final part of Franaszek’s
construction yields more or less ”automatically” a small number of channel
representations. The great contribution to the art made by Gu & Fuja’s
method is the greater insight it provides over prior methods.

5.6 Examples of RLL (d, k) block codes

In this section we shall take a closer look at the various implementations
of RLL (d, k) block codes. We start with a description of the Eight to
Fourteen Modulation (EFM) and continue with a variety of construction
for maximum runlength constrained channels. The codeword length of the
examples provided are relatively small. Examples of k-constrained codes
using (very) large blocks are presented in Section 6.3.4, page 150.

www.manaraa.com

114 CHAPTER 5. RLL BLOCK CODES

5.6.1 EFM

The designers of the Compact Disc system chose, after ample experimental
evidence, a runlength-limited code with minimum runlength d = 2. They
opted for a block structure. A source block length m = 8 is an adequate
choice for the source words, since the entire source format (16-bit audio
samples, etc.) is byte oriented. The construction of EFM rests entirely,
with some additional tricks of the trade to be explained shortly, on Con-
struction 2. According to Table 5.10, page 110, a rate 8/16, (2,10) block-
decodable code can be immediately constructed with Construction 2. This
code can accommodate 257 source words. It can be verified that k < 10 is
not possible for a simple rate 8/16, block-decodable code.

The selection of the two merging bits used to cascade the 14-bit se-
quences are governed by Table 5.8, page 110. There are instances where the
two merging bits are not uniquely prescribed by the minimum and maximum
runlength conditions, and we have freedom to transmit one of a number of
possible merging words. This freedom of choice is utilized for minimizing
the power density at the low-frequency end. As the two merging bits did not
provide sufficient freedom for controlling the power density, it was decided
to increase the number of merging bits to three, and as a result thereby
reducing the rate from 8/16 to 8/17.

Chapter 11 provides an in-depth discussion of the low-frequency (lf) con-
trol of EFM and other codes. The same chapter also offers a comprehensive
study of the relationship between channel capacity and lf-control. More de-
tails of EFM, such as coding tables, and so on, can be found in the patent
literature [165].

5.6.2 Rate 8/9, (0, 3) code

According to Table 4.4, page 60, the capacity of a sequence with no runs
of more than three ’zero’s is C(0, 3) ' 0.947. Using the same table, we
conclude C(0, 2) ' 0.879 < 8/9, so that there is no way to construct a rate
8/9 code with no runs of more than two ’zero’s. For the specified (0, 3)
constraints we find

D9 =

208 108 56 29
193 100 52 27
164 85 44 23
108 56 29 15

 . (5.8)

The existence of a block code can be ascertained with Franaszek’s recursive
elimination technique previously described. It is verified without much dif-
ficulty that σ1 and σ2 are the principal states (σ3 and σ4 are deleted). From
any principal state there are at least 293 > 256 sequences available.

www.manaraa.com

5.6. EXAMPLES OF RLL (D,K) BLOCK CODES 115

Alternatively, we can calculate that there are 293 (d = 0, k = 3, l =
1, r = 2) sequences that can be cascaded, as in Construction 1, without a
merging rule.

This, in principle, concludes the discussion. Patel [275] showed, however,
that we can do slightly better. By judiciously discarding a number of poten-
tial codewords he arrived at a code in which the pattern Sy = ’100010001’
is not a codeword and also does not occur anywhere in the coded sequence
with original or shifted codeword boundaries. Thus Sy can be used as a
synchronization pattern at selected positions in the data stream to identify
format boundaries. A look-up table, or alternatively the enumerative en-
coding technique (see Chapter 6), may be used for encoding and decoding.
However, in this case a comprehensive word allocation can be obtained to
create simple Boolean equations for encoding and decoding.

The codeword assignment, given by Patel (see Mee & Daniel [244], vol-
ume 2), affords simple and inexpensive encoder and decoder logic. The al-
location is based on the ’divide and conquer’ strategy. Any 9-bit codeword
is partitioned into three parts: two 4-bit subcodewords and one merging
bit. The 8-bit source block is partitioned into two 4-bit digits. The two 4-
bit source words are mapped onto the two 4-bit subcodewords using small
look-up tables. Some extra hardware is needed for determining the merging
bit.

5.6.3 Other k-constrained codes

Both (0, k) codes discussed in the previous section, are examples of rate (n−
1)/n block codes. The rate of these codes are prohibitively low for current
HDD recording products. A code rate of 16/17 or 24/25 is commonly found
in modern products.

In this section, we will outline a family of simple high-rate k-constrained
block codes, first presented by Immink & Wijngaarden [168]. The code rate
is R = (n − 1)/n, n odd, n ≥ 9, and the maximum runlength is k = 1+
bn/3c. The construction is particularly suited for schemes where encoding
and decoding using table look-up is impractical, as in order to build the
codeword, at most eight bits of the (n − 1)-bit source word have to be
altered. This has an immediate bearing on the size of the look-up tables
and the worst-case error propagation.

Definitions
Let k(x) be the maximum runlength of ’zero’s in the word x. Let l(x)
be the number of consecutive leading ’zero’s of the word x, that is, the
number of ’zeroes’ preceding the first ’one’. And let r(x) be the number
of consecutive trailing ’zeroes’ of the word x, that is, the number of ’zero’s
succeeding the last ’one’.

www.manaraa.com

116 CHAPTER 5. RLL BLOCK CODES

Preliminaries
Let the (n− 1)-tuple z = (z1, . . . , zn−1) be the binary source word and let
p = (n− 1)÷ 2 + 1.
Define the intermediate n-tuple x = (x1, . . . , xn) by xi = zi, 1 ≤ i ≤ p− 1,
xi+1 = zi, p ≤ i ≤ n, and set the pivot bit xp := 1. The left and right parts
of the vector x, xl and xr, are defined by xli = zi, xri = zi+p, 1 ≤ i ≤ n÷2.
A more judicious allocation of the source bits is possible in a byte-oriented
system (see later). Set the pivot bit xp := 1.

MAIN ALGORITHM, k=1+bn/3c
Let r = bk/2c; l = k − r, and define the intermediate n-tuple
y = (y1, . . . , yn), where yi = xi, 1 ≤ i ≤ n

If l(y) ≤ l and r(y) ≤ r and k(y) ≤ k then transmit y as is.

If (l(y) ≤ l and k(xl) ≤ k) and (r(y) > r or k(xr) > k) then begin
yp−1 := 1; yp := 0; yp+1 := 0; yn−r := 1; yn−r+1 := xp−1; yn−r+2 := xp+1;
transmit y; end;

If (r(y) ≤ l and k(xr) ≤ k) and (l(y) > l or k(xl) > k) then begin
yp−1 := 0; yp := 0; yp+1 := 1; yl+1 := 1; yl−1 := xp+1; yl := xp−1;
transmit y; end;

If (l(y) > l or k(xl) > k) and (r(y) > r or k(xr) > k) then begin
yp−1 := 1; yp := 0; yp+1 := 1; yl+1 := 1; yn−r := 1; yl := xp−1; yn−r+1 := xp+1;
transmit y; end;

During decoding, the pivot symbol yp is observed. If yp = 1 then decoding
is straightforward. If, on the other hand, yp = 0 the bits yp−1 and yp+1

are used to uniquely re-constitute the original (n − 1)-tuple. Note that in
total at most eight bits of the original (n − 1)-tuple z are involved in the
scheme, namely y1, y2, y3, yp−1, yp+1, yn−2, yn−1, and yn. In order to avoid
error propagation in a byte-oriented system, these bits should be taken from
one input byte. Then any error propagation resulting from an error in the
pivot bit yp occurred during transmission is confined to one decoded byte.
In the next subsection, the algorithm is worked out for a rate 16/17, (0,6)
code.

Description of a rate 16/17, (0,6) code

The code translates 16 bits (two bytes) of user data into 17 channel bits.
The 17-bit codewords are characterized by the fact that they have at most
six consecutive ’zero’s and have at most three leading and at most three
trailing ’zero’s. Error propagation is limited as any single channel bit error
made during retrieval will result in at most one decoded byte error. Let z

www.manaraa.com

5.6. EXAMPLES OF RLL (D,K) BLOCK CODES 117

= (z1, . . . , z16) be the 16-bit input word. The 17-bit word y = (y1, . . . , y17)
is obtained by shuffling:

z1 z9 z10 z11 z2 z3 z4 z12 1 z13 z5 z6 z7 z14 z15 z16 z8

Encoding algorithm

Define the Boolean variables (the ’+’ denotes the logical ’or’-function) L1 =
y1 + y2 + y3 + y4, L2 = y2 + · · · + y8 and let R1 = y14 + y15 + y16 + y17,
R2 = y10 + · · ·+ y16. Let further L = L1L2 and R = R1R2.

Transmission of a word is based on the following 4-step algorithm:

If LR then transmit y as is.

If LR then reshuffle and transmit:

z1 z9 z10 z11 z2 z3 z4 1 0 0 z5 z6 z7 1 z12 z13 z8

If LR then reshuffle and transmit:

z1 z12 z13 1 z2 z3 z4 0 0 1 z5 z6 z7 z14 z15 z16 z8

If LR then reshuffle and transmit:

z1 z12 0 1 z2 z3 z4 1 0 1 z5 z6 z7 1 0 z13 z8

Each modification made during the encoding process is uniquely identifiable
and decoding can therefore be done in a straightforward fashion. Note that
the source bits (z1, . . . , z8), which constitute the 1st source byte, are trans-
mitted unaltered. The retrieved source bits (z9, . . . , z16), which constitute
the 2nd source byte, are functions of the pivot bit y5. It can therefore easily
be seen that error propagation due to any single channel bit error in the
received codeword is restricted to at most one decoded byte error.

Variations of the above construction have been presented by Kuki &
Saeki [209], Wijngaarden & Soljanin [349] and Aziz et al. [18, 19, 20, 21].
Their construction features a smaller maximum runlength at the cost of
mounting error propagation.

www.manaraa.com

118 CHAPTER 5. RLL BLOCK CODES

5.6.4 Sequence replacement technique

The sequence replacement technique published by Wijngaarden et al. [345]
is a recursive method for removing forbidden subsequences from a source
word. The positions where the forbidden subsequences are removed, are
encoded as binary words, and subsequently inserted at predefined positions
of the codeword. The sequence replacement technique is attractive as the
complexity of encoder and decoder is very low, and the method is very
efficient in terms of rate-capacity quotient. Although the method can be
used to remove various kinds of unwanted subsequences, we will demonstrate
the principle of operation of the method by an application to (0, k) codes,
where sequences of runs of k + 1 consecutive 0s are removed.

Principle of operation

Wijngaarden et al. published three methods of which only one will be de-
scribed below. Let X = (x1, . . . , xn−1) be an (n− 1)-bit source word, which
has to be translated into an n-bit code word Y = (y1, . . . , yn). Obviously,
the rate of the code is (n − 1)/n. The task of the encoder is to translate
the source word into a (0, k)-constrained word.

The encoder starts by appending a ’1’ to the (n − 1)-bit source word,
yielding the n-bit word, denoted by X1. The encoder scans (from right
to left, i.e. from LSB to MSB) the word ’X1’, and if this word does not
have the forbidden subsequence 0k+1, the vector Y = X1 is transmitted
as is. If, on the other hand, the first occurrence of subsequence 0k+1 is
found, we invoke the following procedure. Let the source word be denoted
by X20

k+1X11, where, by assumption X1 has no forbidden subsequence.
The forbidden subsequence 0k+1 is removed yielding the (n − k − 1)-bit
sequence X2X11. Let the forbidden subsequence start at position p1. The
position p1 is represented as a (k + 1)-bit binary word, 1A11, where A1 is
the binary representation, in k − 1 bits, of the position p1. The tail ’1’ of
X2X11 is replaced by 1A110, yielding X2X11A110. Note that the sequence
X2X11A110 is of length n. If X2X11A110 is free from other occurrences of
the subsequence 0k+1 then Y = X2X11A110. Otherwise, the encoder repeats
the above sequence replacement procedure for the string X2X11 etc, until
all forbidden subsequences have been removed. After s replacements, the
codeword Y will be of the form

Z1As10 . . . A210A110,

where Ai are the binary representations of the positions pi, 1 ≤ i ≤ s, where
starts of the strings 0k+1 occurred in the original sequence. The sequence
Z is the remaining part of the source word, which is free from forbidden
words. The decoder can uniquely undo the various replacements and shifts
made by the encoder.

www.manaraa.com

5.6. EXAMPLES OF RLL (D,K) BLOCK CODES 119

Example 5.7 We use the sequence replacement technique to translate the 20-

bit word X = ’00000100000011000000’ into a 21-bit codeword of a rate 20/21,

(0,5) code. The two forbidden subsequences 06 occur at the positions p1 = 7 and

p2 = 15. We, therefore, have s = 2, A1 = ’0110’(=6), A2 = ’0111’(=15), and Z =

’00000111’. We obtain the codeword Y = Z1A110A210, which after substitutions

yields ’000001111011010011110’.

It has been shown by van Wijngaarden et al. that the codeword length n
has to satisfy the following requirement:

n ≤ 2k−1 + k + 1, k ≥ 2.

The redundancy of the sequence replacement code is

1−R ≈ 2 2−k, k >> 1.

From (4.3), page 60, we know that the redundancy of maxentropic k-
constrained sequences is

1− C(0, k) ≈ 1

4 ln 2
2−k =

1

2.77
2−k, k >> 1,

which reveals that the redundancy of the sequence replacement method is
a factor of five away from optimal for k >> 1.

5.6.5 High-rate (klr) codes with uncoded symbols

Section 5.6.3 deals with high-rate k-constrained codes that can be encoded
and decoded with a very simple algorithm. An attractive feature of this
family of codes is that irrespective of the codeword length n, n > 16, only
eight of the n bits need to be encoded. The remaining (n − 8) bits, called
uncoded bits, are equal to the source bits. Following terminology of error
correcting codes, the uncoded, or unconstrained, part of the codeword is
called the systematic part of the codeword. The benefits of having a large
systematic codeword part are twofold: error propagation is limited to the
coded symbols, and hardware is limited to a look-up table of the coded part.
Obviously, these benefits are very attractive, and it is therefore of practical
interest to investigate codes with a large systematic codeword part. A
straightforward way of achieving this is by interleaving coded and uncoded
symbols. For example, constrained words generated by a rate IBM 8/9,
(0,3) code (see Section 5.6.2) can be interleaved with uncoded symbols. An
example of a rate 24/25, (0,11), based on the above IBM code, has been
presented by Fisher & Fitspatrick [82]. Another application of interleaving
the IBM code for constructing a rate 16/17, (0,8) code has been disclosed
by Sonntag [307]. Both McEwen et al. [239] and McClellan [237] found that

www.manaraa.com

120 CHAPTER 5. RLL BLOCK CODES

interleaving of a base (0, k) code with uncoded 8-bit symbols may lead to
very high-rate codes. Rates including 32/33, 48/49, 56/57, 72/73, 80/81,
and others are used in magnetic recording (HDD) channels. Interleaving is
a simple method, but, as can be seen it is far from optimal: a rate 16/17,
(0,6) code with the virtue of single byte error propagation can be constructed
with the method outlined in the previous section. Patapoutian [272] et al.
disclosed a rate 32/33, (0,6) code with limited error propagation.

Interleaving is an obvious example of the generation of codewords that
are formed of coded and uncoded symbols, but probably we can do better.
The general question is: Can we find a set of (klr) n-bit codewords that can
be uniquely translated into a set of source words and vice versa with a given,
and preferably maximum, size of the systematic part of the codeword? The
analysis given below, taken from van Wijngaarden & Immink [347], offers
an elegant answer to this interesting and practical question. More results
have been presented by Campello et al. [47]

We start with some definitions. Let X denote the set of (klr) codewords, χi

= (χi,1, . . . , χi,n), 0 ≤ i ≤ M −1, of length n, and let B be the set of source
words, βi = (βi,1, . . . , βi,m), 0 ≤ i ≤ 2m − 1, M ≥ 2m, of length m. Define
the vector ψ = (ψ1, . . . , ψn), whose elements are binary, i.e. 0 or 1. Let
ψi = 0 if the symbol at position i is uncoded, and 1 if the symbol at position
i is coded. That part of the codeword, where ψi = 0 is the systematic part
of the codeword. The question is now to find a subset X̂ of X, |X̂| = 2m,
such that a one-to-one mapping f : B → X̂ for all βi is possible, where
the function f satisfies the condition that if ψj = 0 we stipulate βi,rj = χi,j,
rj ∈ {1, . . . ,m}. It is irrelevant for the moment to which of the source
symbols the uncoded symbols are assigned. Note, however, that in a larger
system, where the channel code cooperates with an error correcting code,
the assignment of the systematic and non-systematic part can be of great
concern.

A little thought will make it clear that a given symbol position is sys-
tematic if all codewords have a ’zero’ at that position. Clearly, a ’zero’ at
that position is the worst case that can happen, as a placement of a ’one’
is always possible. A mapping is therefore possible if the number of (klr)
sequences that have ’zero’s at the symbol positions j, where ψj = 0, equals
or exceeds 2m. The number of such (klr) sequences can be computed with
generating functions or by a manipulation of the adjacency matrix. In the
sequel, we will demonstrate how this can be achieved by a manipulation of
the adjacency matrix.

Let D be the (k+1)×(k+1) adjacency matrix that represents the (0, k)
constrained channel (see also Section 4.3.1, page 60). The entries of D are

www.manaraa.com

5.6. EXAMPLES OF RLL (D,K) BLOCK CODES 121

given by
di1 = 1, i ≥ 1,

dij = 1, j = i+ 1,

dij = 0, otherwise.

(5.9)

Let D0 be the (k + 1)× (k + 1) matrix, whose entries are defined by

d0ij = 1, j = i+ 1,

d0ij = 0, otherwise.
(5.10)

Note that the entries of D0 equal those of D with the exception of the
left column that pertain to emitted ’one’s (see Figure 4.2, page 61). Then
compute recursively, for i = 1, . . . , n

Ai = Ai−1{(1− ψi)D
0 + ψiD},

where A0 = E. Let A = An. Then the number of (klr) sequences, Nψ
klr,

with ’zero’s at the positions, where ψi = 0 equals

Nψ
klr = 2n−w(ψ)

r+1∑

j=1

ψn−j+1[A]k+1−l,j, n > k.

The weight w(ψ) denotes the number of ’one’s in the vector ψ. In order to
find the maximum number of uncoded symbols for given k and n, we have
to conduct an exhaustive search trying all possible vectors ψ. Results of
computations are listed in Table 5.11.

Table 5.11: Maximum size of the systematic part of rate (n − 1)/n,
(0, k, dk2e, bk2c) codes.

n k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
8 1 4 4 4 7 7 7
9 1 4 5 5 5 8 8
17 - 4 6 9 9 12 13
25 - 2 7 12 13 15 17

The table shows that a rate 16/17, (0,6) code can be constructed with a
systematic part of nine uncoded symbols. The vector ψ that maximizes the
number of codewords is (00110001110001110), and the number of available
codewords is 73728 > 216. A look-up table (ROM) is required for the encod-
ing of the remaining eight coded symbols. The simple construction given in
Section 5.6.3 of a code with the same specifications requires eight instead
of nine uncoded positions. The nine coded symbols can be encoded with
some simple random logic. The rate 24/25, (0,9) code disclosed in Section
5.6.3 has 17 uncoded symbols, and can thus not be improved according to
Table 5.11.

www.manaraa.com

122 CHAPTER 5. RLL BLOCK CODES

5.7 Block-decodable RLL Codes

In the previous (and in the upcoming) chapters, the terms (d, k) and RLL
sequence have been used as synonyms, and the design of encoders that
generate RLL sequences has been conducted by designing encoders that
generate (d, k) sequences. The encoder is followed by a change-of-state
encoder (precoder) that translates the (d, k) into RLL sequences prior to
recording them on disk or tape. Sequences that are assumed to be recorded
with such an intermediate change-of-state encoding (precoding) step are
said to be given in non-return-to-zero-inverse (NRZI) notation, whereas
sequences transmitted without such a step are referred to as non-return-to-
zero (NRZ).

Until the early 90’s, code designers believed there was no price to be
paid for the above design procedure, and that there was no ”difference”
between codes in NRZ and NRZI representation. However, intuition turned
out to be false. If we directly design an RLL code, that is, instead of the
conventional design of a (d, k) code followed by a precoder, the RLL code
may have better attributes. In particular, it is profitable in terms of error
propagation to directly design RLL encoders. The RLL codes on which we
will concentrate in the next section are block decodable, while at the same
time they are simpler to implement than equivalent (d, k) block-decodable
codes currently being used.

We start with a description of the basic idea of the RLL coding tech-
nique. In order to simplify the exposition, we confine ourselves for a while
to sequences with a minimum runlength only (i.e. k = ∞). A generalization
to sequences with both a minimum and a maximum runlength constraint
is postponed to a later section. The following simple example will demon-
strate the potential usefulness of the coding technique, and in fact it shows
that, indeed, there is a significant difference between code designs based on
NRZ or NRZI representations.

Consider the simple (d = 1,∞) RLL code described in Table 5.12. Note
that the coding table is not presented in the regular format of a finite-state
machine. The codeword length is four and the code can accommodate six
source words, i.e., has size six. The left hand column shows the source
symbols, represented by an integer between ’0’ and ’5’, while the right hand
column shows the possible channel representations of the corresponding
source word. Note that the RLL code is presented in NRZ notation, that
is, sequences generated by this code should therefore not be followed by
a change-of-state encoding operation (precoder). Four of the six source
words, namely 0, 2, 4, and 5, are uniquely represented by a codeword.
It is easily verified that these four codewords can be freely concatenated
without offending the prescribed minimum runlength constraint, that is, in
the cascaded sequence there are at least two consecutive ’one’s or ’zero’s.

www.manaraa.com

5.7. BLOCK-DECODABLE RLL CODES 123

Table 5.12: Codebook of a d = 1 RLL block code.

Source Codewords
0 0000
1 0001/0110/1000
2 0011
3 0111/1001/1110
4 1100
5 1111

The remaining two source words, namely ’1’ and ’3’, are each represented
by three alternative codewords. The source word ’1’ may be represented
by ’0001’, ’0110’, or ’1000’, and the source word ’3’ may be represented by
’0111’, ’1001’, or ’1110’. The encoder’s choice depends on the last codeword
transmitted and the next codeword to come. For this simple case, the reader
can verify that by looking ahead and looking back at most one codeword
in time, it is always possible to select (at least) one of the three alternative
representations that fulfills the stated minimum runlength requirement. A
casual glance at Table 5.12 is sufficient to convince the reader that the
table has the virtue of a unique state-independent inverse, which means that
observation of a single codeword is sufficient information for the retrieval
of the corresponding source word. We conclude, therefore, that the code
presented in Table 5.12 is a (1,∞) RLL block-decodable code. In contrast, a
conventional dk-constrained block-decodable code with the same parameters
constructed with Franaszek’s method, Section 5.3.1, has size five, and we
draw the fascinating conclusion that the above RLL block-decodable code
has a slightly larger size.

The above table shows the code in a non-canonical format, but with
little effort the above coding rules can be cast into the model of a standard
finite-state encoder. The encoder graph has eight states, and the output
and next-state functions can be represented by the following 8× 8 matrix:

0/0000 1/0000 2/0000 3/0000 4/0000 5/0000
0/0110 2/0110 1/0001 3/0001 4/0000 5/0000
0/0011 2/0011 1/0011 3/0011 4/0011 5/0011
0/0111 2/0111 1/0111 3/0111 4/0111 5/0111
0/1000 1/1000 2/1000 3/1000 4/1000 5/1000
0/1110 2/1110 1/1001 3/1001 4/1001 5/1001
0/1100 1/1100 2/1100 3/1100 4/1100 5/1100
0/1111 2/1111 1/1111 3/1111 4/1111 5/1111

.

The matrix elements are expressed in the form x/y, where x is the source
word and y is the corresponding encoder output. For reasons of space, we
follow the convention that if a transition is allowed from state i to state j,

www.manaraa.com

124 CHAPTER 5. RLL BLOCK CODES

the i, j matrix element equals the label x/y pertaining to the edge i → j. If,
on the other hand, such a transition is not permitted, the matrix element is
empty. The look-ahead dependence of the codewords was accounted for by
tagging edge labels taken from the look-ahead code (Table 5.12), where the
codewords are delayed by one block interval. It should be appreciated that
the standard finite-state encoder given above is not always the preferred
embodiment of the coding rules in practice. It is usually advantageous to
translate the code table plus the look-back and look-ahead dependences
directly into logical gates using a CAD package rather than minimizing the
number of encoder states.

Clearly, the code of size six shown in Table 5.12 is of great academic
interest only, if it were not possible to generalize it to more interesting code
sizes. Indeed, the simple code presented in the preceding example can be
generalized for arbitrary values of the codeword length n > 3. The size of
the code, denoted by N(n), is given by

N(n) = 0, n < 0,
N(0) = 1,
N(n) = N(n− 3) + F (n− 1), n > 0,

(5.11)

where the Fibonacci numbers F (n) are given by

F (n) = 0, n < 0,
F (0) = 1, F (1) = 2,
F (n) = F (n− 1) + F (n− 2), n > 1.

(5.12)

Despite the elegance of the recursive expression, (5.11) could only be proved
after a straightforward, but tedious, process of enumeration and, therefore,
the proof is omitted.

Table 5.13 shows N(n) as a function of the codeword length n. The size
of the dk-constrained block code of the same codeword length, F (n− 1), is
included for comparison purposes. The table reveals that the smallest rate
2/3, (d = 1) RLL block-decodable code has a codeword length n = 6. For
the same rate, the conventional (d, k) We also note that N(9) = 72, which
suggests the feasibility of the construction of a rate 6/9, (1, k < ∞) RLL
block-decodable code and, of even more practical relevance, that N(12)
= 305, which suggests the feasibility of the construction of a rate 8/12,
(1, k < ∞) RLL block code with the attractive source word length m = 8.
Both codes are, as can be seen in Table 5.13, not possible with conventional
d, k < ∞-constrained block codes of the same length. block code requires a
codeword length of at least 18 (see Section 5.3.1, page 100).

www.manaraa.com

5.7. BLOCK-DECODABLE RLL CODES 125

Table 5.13: Code size N(n) of (1,∞) RLL block codes of codeword length
n along with the code size, F (n− 1), of conventional (d,∞) codes of the
same codeword length.

n N(n) F (n− 1)
4 6 5
5 10 8
6 17 13
7 27 21
8 44 34
9 72 55
10 116 89
11 188 144
12 305 233

Numerous RLL block-decodable codes can be constructed for runlength
parameters and word lengths m and n for which no conventional (d, k)
block-decodable codes could be constructed (see e.g. Immink [149] and
Hollmann [136]). A brief survey of RLL block-decodable codes of practical
interest is listed in Table 5.14. For comparison purposes we have tabulated
in parentheses the shortest possible codeword length of conventional block-
decodable (d, k) codes of the same rate and runlength parameters, which
were found using the method presented in Section 5.3.1.

Table 5.14: Survey of RLL block-decodable codes. The number in paren-
theses denotes the codeword length of a (d, k) block-decodable code with
the same specifications as the RLL block-decodable code.

d k m n
0 1 4 6 (18)
0 2 5 6 (12)
1 ∞ 4 6 (18)
1 10 6 9 (21)
1 9 8 12 (21)
2 ∞ 3 6 (14)
2 8 8 16 (22)
3 10 6 15 (20)

The rate 8/12, (1,9) and the rate 8/16, (2,8) RLL block-decodable codes
are of specific interest as they are well adapted to byte-formatted storage
systems. A beautiful rate 8/12, (1,8) block-decodable code was constructed

www.manaraa.com

126 CHAPTER 5. RLL BLOCK CODES

by Hollmann [136]. The rate 8/12, (1, 9) code listed in Table 5.14, requires
358 encoder states. This number may, at first sight, look prohibitively large,
but this is merely the result of the standard finite-state machine description
chosen. Given the finite-state encoder, we can easily construct a code book
as depicted in Table 5.12, and this code book, in turn, can, using the look-
back and look-ahead features, be implemented in a straightforward manner.
The required hardware is well within the reach of modern LSI. The code is
much more complex than the industry standard rate 2/3, (1, 7) code, (see
Section 7.4.1, page 171), but any coding scheme is merely a part of a larger
system and its cost must be in proportion to its importance within that
system.

5.8 Almost block-decodable codes

The technique presented in this section is broadly similar to ”Constructions
1 and 2”. An essential, and very useful, property of these constructions,
which they have in common with the constructions to be discussed here, is
that source words have a one-to-one relationship with finite-length (dk) se-
quences that have additional constraints on the number of leading and trail-
ing ’zero’s. After translating the source words into (dk) sequences, these
sequences are multiplexed with β = d bits, called merging bits, which are
needed to preserve the predefined runlength constraints. Constructions 1
and 2 have the engineering virtues that

• the translation of source words into (dk) constrained codewords can
be accomplished with a single look-up table,

• the cascading of codewords can be done with a simple merging rule
involving β = d merging bits,

• their structure permits enumerative coding techniques, see Chapter
6, to simplify encoding and decoder hardware, which is a particularly
desirable feature when the codeword length is relatively large, and

• they are simple to understand.

The constructions, to be discussed in this section, have the same virtues,
but less than dmerging bits are needed for cascading the (dk) sequences. An
essential feature of these codes is look-ahead, that is, during the encoding
process, the codeword is not only a function of the history, but it is also
a function of the upcoming data. The merging operation affects both the
merging bits and a few bits of the adjacent (dk) sequences. As a result, in
contrast with Construction 1 and 2, the codes presented in this section are
almost-block-decodable as decoding of the sequence can be accomplished by

www.manaraa.com

5.8. ALMOST BLOCK-DECODABLE CODES 127

observing (part of) the received codeword plus a small part of the previous
codeword. In two constructions, called Construction 3 and 4, a codeword
and, in addition, one bit of the previous codeword have to be observed
for proper decoding, while in Construction 5, in addition three bits of the
previous codeword must be observed. As a result, minor error propagation
may occur during decoding.

We commence our exposition with a description of a simple code, called
Three Position Modulation (3PM), which has been used in disk systems.
The various constructions to follow are generalizations of the 3PM code.

5.8.1 Three Position Modulation (3PM) code

The basic parameters of the 3PM (Three Position Modulation) code, which
was invented by Jacoby [172, 173] are n = 6, d = 2, k = 11, and R = 1/2.
The encoding mechanism of the 3PM code is similar to block encoding and
decoding with one extra merging rule, which can easily be understood by
looking at Table 5.15.

Table 5.15: Basic coding table 3PM code.

Data Code
000 000010
001 000100
010 010000
011 010010
100 001000
101 100000
110 100010
111 100100

As we may notice, the right-hand boundary bit at position 6, the merging
bit, is set to ’zero’. If the juxtaposition of codewords will offend the d = 2
condition, that is, if both the symbol at position 5 of the present codeword
and the symbol at position 1 of the next codeword are ’one’, the merging bit
is set to ’one’ and the symbols at positions 1 and 5 are set to ’zero’. At the
receiver site, we can observe that such a modification has been made, and an
action to undo it is easily done. Note that there are 129 codewords of length
13 (including one merging bit), so that a rate 7/13 code is immediately
possible with the above 3PM construction. Kim [204] has been granted a
U.S. Patent on an embodiment of a rate 7/13, (2,25) code, which is based
on 3PM. An example of a rate 4/8, (2,9) RLL code with additional merging
rules to limit the k constraint was given by Tanaka [316]. Tanaka cleverly

www.manaraa.com

128 CHAPTER 5. RLL BLOCK CODES

observed that if the merging bit equals ’one’ that it cannot be followed by
the string ’001’ or preceded by the string ’100’. This property can be used
to reduce the k-constraint, or to reduce the ’dc-content’(see Chapter 11).
The above simple examples describing the, d = 2, 3PM code are easily
generalized to other values of d.

5.8.2 Constructions 3, 4, and 5

The source words are represented by (dklr) sequences of a length n − β,
which are cascaded using β = d − 1, d > 1 merging bits. For larger values
of d, namely d ≥ 5, it is possible to reduce the number of merging bits to
β = d − 2. For even larger values of d we can further reduce the number
of merging bits (see Section 5.8.3, page 131). We start with Construction 3
using β = d− 1, d > 1, merging bits.

Construction 3: Choose the parameters d, d ≥ 2, k, and n, and let the
number of merging bits be β = d−1. We have to choose k so that k−dd/2e >
d. The parameters r and l are specified by l + r = k − β. For reasons of
symmetry, the set of permitted words is maximized if r = b(k − β)/2c and
l = (k − β − r). Then the (d, k − dd/2e, l, r) sequences of a length n − β,
excluding the words 0n−β and 0n−β−11, can be cascaded with a simple rule.
Note that these two words are excluded to insure that the juxtaposition
of more than two codewords does not produce a potential problem. This
condition is merely imposed for clerical convenience as codes can indeed
be built with the excluded words, see Section 5.8.1, or the literature, for
example, [316, 238].

The merging operation runs as follows. Set the β merging bits to ’zero’.
If both the last bit of the current word and the first bit of the next word are
equal to ’one’, i.e., the d constraint will be violated after a concatenation,
then take the following action:

set both these bits equal to ’zero’,

set the merging bit at merging bit position a = bd/2c equal to ’one.’

The merging bit at position a is termed the pivot bit, and the operation
described above is called a pivoting operation. The pivoting operation pro-
vides that the two ’one’s that are too close together, will be replaced by a
single ’one’ at merging bit position a. As a result of the pivoting operation,
the most left ’one’ of the next word is ’shifted’ dd/2e positions, which is
the reason for restricting the codebook to (dklr) sequences with a maxi-
mum runlength equal to k − dd/2e. Generally speaking, this constraint is
too tight, as it is in force for the entire word. It is easily seen that it is
sufficient to exclude, for d is even, from the set of (dklr) sequences those
sequences that start with the string 10p, p > k − d/2, or end with 0p1,

www.manaraa.com

5.8. ALMOST BLOCK-DECODABLE CODES 129

p > k − d/2. For odd d, it is sufficient to bar those sequences that start
with 10p, p > k− (d− 1)/2, or end with 0p1, p > k− (d+1)/2. The reason
for restricting the code set to (d, k − dd/2e, l, r) sequences is that this set
has the desirable property that it consists of (dklr) sequences only, which
permit enumerative encoding and decoding. If the usage of enumerative
coding is not contemplated, then in certain instances a more efficient code
can be designed by the less restrictive conditions.

In contrast with both Constructions 1 and 2, where during the decoding
operation, all merging bits are skipped by the decoder, decoding is done here
by observing n − β bits of the received word plus the pivot bits preceding
and succeeding the actual codeword. That is, a detection window of in total
n−d+3 bits is required for undoing the modifications made. A logic array,
which embodies the inverse of the encoding function, can readily be used
for translating the n−d+3 bits into the recovered m-bit source symbols. If
enumerative coding is employed, then decoding is done in two steps. With
a small logic array the n− d+3 bits can be uniquely reconstituted into the
corresponding (n−β)-bit (dklr) sequence, which, in turn, can be translated,
using enumerative coding, into the recovered m-bit source tuples. It should
be appreciated that all merging bits, except the pivot bit, can be skipped.

As the code format involves the translation of source words into (dklr)
sequences, the code permits enumerative coding techniques to simplify en-
coding and decoder hardware. Note that the removal of the two words
0n−d+1 and 0n−d1 does not destroy the simple lexicographical ordering of
the (dklr) sequences. Enumerative encoding and decoding is particularly
attractive when the codeword length is relatively large. A description of
enumerative coding of (dklr) sequences can be found in Section 6.2.

The efficiency of the 3PM design is easily seen from the following argu-
ment. For large n we have Nd(n) ≈ A2C(d,∞)n, where A is independent of
n. It is clear from the above that the increase in code size is approximately
2C(d,∞). For d = 2, for example, we have 2C(d,∞) ≈ 1.47, and we conclude
that the code size increases by almost 50%. Table 6.2, page 148, gives an
indication of the relative efficiency of the various block construction when
the codewords are (very) long.

In the previous constructions, one of the β merging bits is used as a
pivot bit, and the remaining β−1 merging bits are set to ’zero’. In the next
construction, called Construction 4, for d ≥ 3, these ”unused” merging bits
can be exploited, in line with Construction 2, for constraining the maximum
runlength. The rate effectiveness of Construction 3 can thus be improved
with a slightly more complex merging rule.

Construction 4: Choose the parameters d, d ≥ 3, k, and n, k > 2d, and
let the number of merging bits be β = d − 1. We have to choose k so that

www.manaraa.com

130 CHAPTER 5. RLL BLOCK CODES

k − dd/2e > d. The parameters r and l are given by r = k − d − 1 and
l = k − d.

The merging bits are functions of the number of ’zero’s preceding and
succeeding them. In order to define this function, let s be the number of
trailing ”zero’s of the current (dklr) sequence, and let t be the number of
leading ’zero’s of the next (dklr) sequence. Then (d, k−dd/2e, l, r) sequences
of length n−β, excluding the all-0’s word, can be cascaded by choosing the
merging bits as listed in Table 5.16.

Table 5.16: Merging rule of (dklr) sequences.

s,t Merging bits
s = t = 0 0a−110d−a−1

1 ≤ s+ t ≤ k − d+ 1 0d−1

s+ t > k − d+ 1
if s < d ∩ d− s 6= a− 1 0d−s10s−2

if s < d ∩ d− s = a− 1 0a10d−a−2

if s ≥ d > 3 10d−2

if s ≥ d = 3 01

It should be noted that the position a of the pivot bit is given by a = bd/2c.
If the last bit of the current word and the first bit of the next word are both
equal to ’one’, i.e., s = t = 0 then a pivot operation is performed, i.e., both
the last bit of the actual codeword and the first bit of the next codeword are
set to ’zero’. Essentially, all β = d− 1 merging bits are set to ’zero’, unless
the d- or k-constraint will be violated. In the former case the pivot bit at
merging bit position a is set to ’one’, and in the latter case a properly chosen
merging bit, not being the pivot bit at position a, is set to ’one’. Table 5.16
displays a fixed rule, but it should be understood that there is certain degree
of freedom to position the ’one’. The degree of freedom offered can, if
required, be utilized for specific purposes, such as synchronization or the
minimization of the signal power at given frequencies. Decoding is done,
as described in Construction 3, by observing n − β bits of the received
word plus the pivot bits preceding and succeeding them. All merging bits
except the pivot bit can be skipped. In the previous construction, one of
the β = d− 1 merging bits is used as pivot bit, and we exploited, for d > 2,
the surplus of merging bits for constraining the maximum runlength. The
next construction, which is valid for d > 4, employs β = d− 2 merging bits;
three of them are pivot bits.

Construction 5: Choose the parameters d, d ≥ 5, k, and n, and let the

www.manaraa.com

5.8. ALMOST BLOCK-DECODABLE CODES 131

number of merging bits be β = d−2.We have to choose k so that k−bd/2c >
d. The parameters r and l are given by r = b(k−β)/2c and l = (k− r−β).
Then the (d, k−bd/2c, l, r) sequences of a length n−β, excluding the words
0n−β, 0n−β−11, and 0n−β−210, can be cascaded with a simple rule. In this
construction, three of the β merging bit act as pivot bits. The positions
of the pivot bits are denoted by a1, a2, and a3. The basic idea is that the
pivot bits can be set to ’one’ if the d-constraint will be violated during the
cascading operation. The pivot bits are chosen, for reasons of symmetry, as
close to the middle of the β merging bits as possible.

Let s be the number of trailing ’zero’s of the current (dklr) sequence, and
let t be the number of leading ’zero’s of the next (dklr) sequence. Then, as
can easily be verified, there are three combinations where during a cascading
operation the minimum runlength could be offended, namely, (s = t = 0),
(s = 1, t = 0), and (s = 0, t = 1). If the minimum runlength is in danger
of becoming too short, a violation of the d-constraint can be circumvented
by executing a pivoting operation involving one of the three pivot bits. If,
for example, s = t = 0, then pivoting is performed with the pivot bit at
position a1 (by setting it to ’one’ and by setting the ’one’s at the beginning
and end of the adjoining (dklr) sequences to ’zero’). If (s = 1, t = 0), the
pivoting operation is carried out with the pivot bit at position a2, etc. The
possible execution of one of the three distinct pivoting operations can be
uniquely decoded by observing the pivot bits, and an action, at the receiver’s
end, undertaken to restore the original (dklr) sequences is easily performed.
Thereafter, decoding is as usual: all merging bits, except the three pivot
bits, can be skipped.

5.8.3 Generalized construction

In this subsection, taken from [203], the above constructions are generalized
to large values of d. To that end, let s be the number of trailing ’zero’s
of the current (d) sequence, and let t be the number of leading ’zero’s
of the upcoming (d) sequence. There is no violation of the d constraint if
t+β+s ≥ d. Then the merging bits are set to ’zero’ and the n-bit codeword
plus the β merging bits are transmitted. If a d-constraint violation would
occur, i.e. if t+β+s < d, we will perform a special operation, which will be
described shortly. The number of combinations, where a violation occurs is
simply

(d− β + 1)(d− β)

2
, d ≤ 2, β ≤ 1. (5.13)

A violation of the d-constraint can be circumvented by executing an opera-
tion involving the merging bits and the two ’one’s next to the merging bits
that trespass the d-constraint. The two trespassing ’one’s are set to ’zero’
and a judiciously chosen merging bit is set to ’one’. Let the positions of

www.manaraa.com

132 CHAPTER 5. RLL BLOCK CODES

the merging bits be denoted by a1, . . . , aβ. If, for example, s = t = 0, we
set the merging bit at position a1 equal to ’one’ and set the ’one’s at the
beginning and end of the adjoining (d) sequences to ’zero’. If (s = 1, t = 0),
the merging bit at position a2 is set to ’zero’ etc. Clearly, if

(d− β + 1)(d− β)

2
≤ β (5.14)

it is possible to uniquely denote the trespassing combinations by the β-tuple
0i10β−i−1, 0 ≤ i ≤ β − 1, where 0i denotes a string of i consecutive ’zero’s.
From (5.14), we can easily compute the value of the number of merging bits,
β, as a function of d. Table 5.17 gives the results. The possible execution
of one of the β distinct merging operations can be uniquely decoded by
observing the merging bits, and an action, at the receiver’s end, undertaken
to restore the original (d) sequences is easily performed.

Table 5.17: The number of merging bits β as a function of d.

d β
2 1
5 3
9 6
14 10
20 15

5.8.4 Results and comparisons

The algorithm outlined in the previous sections has been implemented and
successfully applied to find almost-block-decodable codes. Our effort has
been focused on the finding of good candidate codes that are byte oriented.
Selected results of our investigations are listed in Table 5.18. The code
efficiency η is defined as η = R/C(d, k). It can be seen that the efficiency
of the codes is better than 90%. Of particular interest in this respect is
the (2,16), rate 8/15 code achieving an efficiency of 97 %. Another code
of practical interest is the byte-oriented (2,9), rate 8/16, code found by
application of Construction 3. This code has a slightly smaller maximum
runlength than the rate (2,10), rate 8/16, block-decodable code that can be
established with Construction 2.

A comparison of Tables 5.18 and 5.10, page 110, shows that the rate
efficiency of the codes constructed with Constructions 3, 4, and, 5 are a few
percent better than that of codes built with Construction 2. We should keep
in mind that the codes listed in Table 5.10 are block decodable, while the

www.manaraa.com

5.8. ALMOST BLOCK-DECODABLE CODES 133

new codes listed in Table 5.18 may suffer from a slight error propagation.
It is the difficult task of the system architect to seek a trade-off between
the smaller maximum runlength and increased risk of error propagation
of the former code against the larger maximum runlength and absence of
error propagation of the latter code. It is difficult to give an answer to
this question as it depends on a number of factors peculiar to a particular
usage.

Table 5.18: Codes based on Constructions 3, 4, and 5.

d k n R C(d, k) η = R/C(d, k) Construction
2 16 15 8/15 0.551 0.97 3
2 9 16 8/16 0.537 0.93 3
3 11 19 8/19 0.464 0.91 4
4 14 22 8/22 0.397 0.92 4
5 20 24 8/24 0.359 0.93 5

www.manaraa.com

134 CHAPTER 5. RLL BLOCK CODES

5.9 Appendix: Generating functions

A very useful method for counting the number of certain constrained se-
quences is offered by generating functions. An extensive treatment of this
topic can be found in the textbook by Riordan [290]. The idea is to as-
sociate with each sequence of numbers a function of a dummy variable in
such a way that common operation on sequences correspond to common
operations on the corresponding functions. Let the sequence of numbers
be c0, c1, c2, We associate with the sequence of numbers a generating
function, or generating series, denoted by T (x), and defined by the power
series

T (x) = c0 + c1x+ c2x
2 +

The variable x is a dummy variable and the generating function is a for-
mal sum, so questions such as convergence are irrelevant. For instance, an
infinite sequence of the exponentials of two,

1, 2, 4, 8, 16, 32, . . .

can be represented by the generating function

T (x) = 1 + 2x+ 4x2 + 8x3 + 16x4 + 32x5 + · · · ,
which can be written in a simple closed form, namely

T (x) =
1

1− 2x
.

Typically, we have a sequence ci such that ci is the number of objects in a
certain set that have a ”value” of some sort equal to i. The relevance in
combinatorics of generating functions may become apparent with a small
example based on Polya’s illuminating paper [286].

Suppose we have a pile of nickels (5 cent), dimes (10 cent), and quarters
(25 cent), and we wish to make change for, say, a dollar. In how many ways
can we do this? The number of ways to make change for a dollar is the
coefficient of x100 in the product of the power series

(1 + x5 + x10 + · · ·)(1 + x10 + x20 + · · ·)(1 + x25 + x50 + · · ·).
The above power series can be succinctly written as

1

(1− x5)(1− x10)(1− x25)
.

Using a mathematical toolbox we can generate the Taylor series of the above
expression, and find

∞∑

i=0

cix
i = 1 + x5 + 2x10 + 3x20 + 4x25 + · · ·+ 29x100 + · · · .

www.manaraa.com

5.9. APPENDIX: GENERATING FUNCTIONS 135

So that we conclude there are 29 ways to make change for a dollar using
nickels, dimes and quarters.

In the second example, we assume there is a set of n + 1 non-negative
integers {a0, . . . , an}. Define

P (x) = xa0 + · · ·+ xan .

Then, the coefficient ci of

∑
cix

i = P (x)m

equals the number of ways m integers taken from {a0, . . . , an} will add to
i. For example, how many combinations of four dice can we find that have
a sum of 12? Using generating functions, we find that c12 of

∑
cix

i = (x+ x2 + · · ·+ x6)4

is the answer. After working out, we find c12 = 125.
The number of ways we can add to i with any number of integers taken

from {a0, a1, . . . , an} is given by the coefficient ci of the generating function

T (x) = 1 + P (x) + P (x)2 + P (x)3 + · · · .

The series T (x) can be formally written as

T (x) =
1

1− P (x)
.

For example, how many combinations of any number of dice can we find
that have a sum of 12? Using generating functions, we find that c12 of

∑
cix

i =
1

1− x− x2 · · · − x6

is the answer. After working out, we find c12 = 1936.

www.manaraa.com

136 CHAPTER 5. RLL BLOCK CODES

www.manaraa.com

Chapter 6

Enumerative coding

6.1 Introduction

In the examples of codes described in the previous chapters, it is tacitly
assumed that a table is used to hold all the codewords. For the small codes
discussed this is indeed a feasible solution, but specifically, when codewords
are comparatively long, the method of direct look-up could easily become
an engineering impossibility. The limit depends on technology and required
bit rate; figures of codeword length of 14 to 16 are commonly quoted as
typical present-day maxima.

However, codewords can be computed by an algorithmic procedure, called
enumerative encoding, which means that there is therefore no need to store
codewords in a table. The algorithm to be discussed below is very similar
to the one used for the well-known conversion of decimal to binary numbers
and vice versa. Binary to decimal conversion is done by forming the inner
product of the binary vector and a vector of weights. In standard binary
to decimal conversion the weights equal the powers of two. In the general
case, encoding and decoding is accomplished by a change of the weighting
system of binary numbers, i.e. from the usual powers of two representa-
tion used in unconstrained binary sequences, to the weight coefficients. For
a codeword of length n, storage capacity is required for approximately n
non-zero weighting coefficients, a full adder and an accumulator to store
the intermediate and final results. The enumerative decoder will contain
some elements, e.g. the weighting coefficients look-up table, which are iden-
tical with the ones in the encoder. Said hardware requirements have to
be contrasted with look-up tables whose size grows exponentially with the
codeword length in case a, conventional, non-algebraic method for encoding
and decoding is used.

As the major practical stumbling block of the construction of very ef-
ficient large block codes, the look-up tables, is removed by the usage of
enumerative coding, we will take a closer look at the feasibility of the con-

137

www.manaraa.com

138 CHAPTER 6. ENUMERATIVE CODING

struction of very large codes. Note that it is implied by Shannon’s capacity
theorem that block codes will approach the capacity with mounting block
length, but that it is not clear at all what this statement means in prac-
tice. In Section 6.3.3, we will show that, as a rule of thumb, a (d, k) block
code comprising codewords of a length of a few hundred bits can realize an
efficiency which is just a few tenths of a percent below channel capacity.

Besides the complexity issue of large codes, there is a second serious
difficulty that could hamper its introduction, namely massive error propa-
gation. Clearly, the longer the codewords the more decoded bits can be in
error when merely a single channel bit is received erroneously. The effects of
average error propagation will be computed in Section 6.4. It will be shown
that the average error propagation can be controlled by a judicious choice
of the enumeration system, which, among others, has a bearing on the rate
of the code. Alternatively, a coding scheme in conjunction with error cor-
rection, specifically constructed to circumvent worst case error propagation,
will be discussed in Section 6.5.

6.2 Basics of enumeration

The translation of input data into constrained sequences and vice versa us-
ing enumeration has a long history [52]. The first encoder using enumeration
was patented by Labin & Aigrain [216] in 1951. The inventors described a
mechanism for translating user data into 35 binary codewords each having
3 out of 7 ’one’s. It is not known to have been put to any practical use.
In 1965, Kautz [196] presented an enumeration scheme for coding (0, k)-
constrained sequences, followed, in 1970, by a general enumeration scheme
of (dk)-constrained sequences by Tang & Bahl [319]. Recent contributions
to the art can be found in [323, 229]. The description of the enumeration
method given below is due to Cover [66].

Let {0, 1}n denote the set of binary sequences of length n and let S be any
(constrained) subset of {0, 1}n. The set S can be ordered lexicographically
as follows: if x = (x1, . . . , xn) ∈ S and y = (y1, . . . , yn) ∈ S, then y is called
less than x, in short, y < x, if there exists an i, 1 ≤ i ≤ n, such that yi < xi

and xj = yj, 1 ≤ j < i. For example, ’00101’ < ’01010’. The rank of x,
denoted by iS(x), is defined to be the position of x in the lexicographical
ordering of S, i.e. iS(x) is the number of all y in S with y < x.

Let ns(x1, x2, . . . , xu) be the number of elements in S for which the first
u coordinates are (x1, x2, . . . , xu).

Proposition 6.1 The rank of x ∈ S satisfies

iS(x) =
n∑

j=1

xjns(x1, x2, . . . , xj−1, 0). (6.1)

www.manaraa.com

6.2. BASICS OF ENUMERATION 139

Proof: By definition, words with prefix (x1, x2, . . . , xj−1, 0) precede words
with prefix (x1, x2, . . . , xj−1, 1). For each j such that xj = 1, ns(x1, x2, . . .,
xj−1, 0) gives the number of elements of S that first differ from x in the
jth term and therefore have a lower lexicographic index. By adding these
numbers for j = 1, 2, . . . , n, we eventually count all the elements in S of
lower index than x.

Given S and the lexicographic index I, the vector (x1, . . . , xn) ∈ S with
index I is obtained as follows:

1. If I ≥ ns(0) set x1 = 1 and set I = I − ns(0); otherwise set x1 = 0.

2. For j = 2, . . . , n, if I ≥ ns(x1, x2, . . . , xj−1, 0) set xj = 1 and set
I = I − ns(x1, x2, . . . , xj−1, 0); otherwise set xj = 0.

The above operation is usually called the encoding operation. The following
two examples, taken from [66], will illustrate the above theory.

Example 6.1 Let S = {0, 1}n. Then ns(x1, x2, . . . , xk) = 2n−k, and

iS(x) =
n∑

k=1

xi2
n−k. (6.2)

The above summation embodies the well-known binary-to-decimal conversion

algorithm, where the weights equal the powers of two. For example the word

’10010’ translates into the integer 16+2=18.

Example 6.2 Let S be the subset of {0, 1}n containing words having w ’one’s
and n− w ’zero’s, that is

S =

{
x ∈ {0, 1}n :

n∑

i=1

xi = w

}
.

Then

ns(x1, x2, . . . , xk−1, 0) =

(
n− k
n(w, k)

)
,

where

n(w, k) = w −
k−1∑

i=1

xi.

Therefore,

iS(x) =
n∑

k=1

xk

(
n− k
n(w, k)

)
. (6.3)

As an example consider the 6-bit word x = ’010100’ with four 0’s and two 1’s.
According to the above enumeration scheme, we can find the rank iS(x) of x using
the array of binomial coefficients from Pascal’s triangle (see Figure 6.1).

www.manaraa.com

140 CHAPTER 6. ENUMERATIVE CODING

1

1

1

1

1

1

1
1

1

1

1

2
3 3

4 46

5 10 10 5
1 16 615 1520

y x

Figure 6.1: Pascal’s triangle gives a representation of the enumer-
ation scheme. The arrows indicate the path taken by the word
’010100’.

Start at the lower left-hand corner of the array, at 15 in Figure 6.1. The leftmost

digit of the sequence x = ’010100’ is a ’0’. Move one step in the X direction, i.e.

toward 10. The next digit is a ’1’. Move one step in the Y direction. i.e. toward

4, and record the number at a single step in the X direction from the current

starting point 3, giving 6+2=8. The last two digits are 0’s leading to no more

additions. Thus the final result is iS(x) = 8.

The next example generalizes the previous example for a non-binary
alphabet. It was shown by Datta & McLauhglin [67] and Milenkovic & Vasic
[246] that the algorithm can be employed to enumerate (dk) constrained
phrases.

Example 6.3 The allowable (d, k) sequences can be thought to be made of
phrases, where each phrase starts with a ’one’ and ending with at least d and at
most k ’zero’s. We will discuss codewords that can be formed by N given phrases.
The set, U , of such (d, k) codewords (note that by definition such a codeword
starts with a ’one’) can be defined by a phrase profile vector v= (v1, v2, . . . , vN).
The components of v take on values from the set {d + 1, . . . , k + 1} and denote
the N phrase lengths that will be used in a codeword. If we let nj be the number
of times j appears in v, then the number of codewords that can be formed is
given by

|U | = N !

nd+1!nd+2! . . . nk+1!
.

The codeword length (in bits) is
∑

nj . Let xj , 1 ≤ j ≤ N, be the jth transmitted
phrase. Then, using Proposition 6.1, we have

ns(x1, x2, . . . , xu−1, 0) =

(
(N − u)!
G(u)

)
,

www.manaraa.com

6.3. ENUMERATION OF (DKLR) SEQUENCES 141

where
G(u) = (nd+1 − n

(u)
d+1)!(nd+2 − n

(u)
d+2)! . . . (nk+1 − n

(u)
k+1)!

and n
(u)
j denotes the number phrases of length j in the first u phrases of the

codeword. Therefore,

iS(x) =
N∑

u=1

(xu − d− 1)

(
(N − u)!
G(u)

)
. (6.4)

The next example shows that enumeration can readily be applied to a
set of (d) sequences.

Example 6.4 Let S be the subset of (d) sequences of length n. Then ns(x1, x2,
. . . , xk) = N(n− k). Thus

iS(x) =
n∑

j=1

xjN(n− j), (6.5)

where N(n) is the number of (d) sequences of length n, n > 0. By definition
N(0) = 1. It is of some interest to verify the above. To that end, consider the
set S of (d = 1) sequences of length 4. As N1(0) = 1, N1(1) = 2, N1(2) = 3,
N1(3) = 5, and N1(4) = 8. For instance, r(1001) = N1(3) +N1(0) = 5 + 1 = 6.
We can readily verify the following transformations:

r(x) x

0 0000
1 0001
2 0010
3 0100
4 0101
5 1000
6 1001
7 1010

In an implementation of the enumeration scheme, the weight coefficients
N(n) can be pre-calculated and stored in memory or they can be calculated
’on the fly’. In the more specific case of (dklr) sequences, similar equations
can be written down (see next section).

6.3 Enumeration of (dklr) sequences

The general case of enumeration of (dklr) sequences cannot easily be de-
scribed with Proposition 6.1. The following alternative scheme can be used
instead.

www.manaraa.com

142 CHAPTER 6. ENUMERATIVE CODING

An alternative to Cover’s enumeration scheme can be given by counting
the number of elements of S that have a higher lexicographic index than x,
the inverse rank of x.

Proposition 6.2 The inverse rank of x ∈ S satisfies

icS(x) =
n∑

j=1

xjns(x1, x2, . . . , xj−1, 1), (6.6)

where xj = 1− xj, the complement of xj.

Proof: Similar to the one of Proposition 6.1 and therefore omitted.

In the theory below, due to Patrovics et al. [277], we will first give an
algorithm for enumerating dkr-constrained sequences for which the length
of the leading ’zero’-run is not constrained. From the results obtained,
enumeration of (dklr) sequences follows easily.

First, we will introduce some notations that will facilitate the use of
Proposition 6.2. Given a dkr-codeword x, let x1

j = (x1, x2, . . . , xj−1, 1).
Denote by N0(i) the number of dkr constrained sequences of length i whose
first element equals 1. We define the quantity aj(x) as the length of the
trailing zero-run of the sub-vector (x1, . . . , xj−1) if it is not the all-zero
sequence. Hence,

aj(x) =

min{(j − i− 1) : 1 ≤ i < j, xi = 1} if j > 1 and
(x1, . . . , xj−1) 6= 0;

d otherwise.

With the above notation, we can write down the next proposition for enu-
merating (dkr) sequences.

Proposition 6.3 The inverse rank of a (dkr) sequence x of length n is

icS(x) =
n∑

j=1

δj(x)N
0(n− j + 1),

where

δj(x) =

{
1 if xj = 0 and aj(x) ≥ d;
0 otherwise.

Proof: If aj(x) < d then x1
j contains at least one ’one’ in the first (j − 1)

positions, and the length of the zero-run between the last two 1s of x1
j is

less than d, violating the d constraint. Therefore, no (dkr) codeword begins
with x1

j , thus ns(x
1
j) = 0. If aj(x) ≥ d, then x1

j does not violate the d
constraint, and so ns(x

1
j) equals the number of (dkr) sequences beginning

with x1
j . As x

1
j ends with a ”1”, ns(x

1
j) equals N

0(n− j+1). By noting the

www.manaraa.com

6.3. ENUMERATION OF (DKLR) SEQUENCES 143

above, we obtain the proposition for the enumeration of (dkr) sequences.

Clearly, (dkr) sequences having more than l leading ’zero’s have lower lex-
icographic indexes than (dklr) sequences. Therefore their inverse rank is
higher. Let xl denote the (dklr) codeword with the highest inverse rank in
S, then the set {0, . . . , icS(xl)} of inverse ranks corresponds to the set of all
(dklr) codewords of a length n. Consequently, the encoding algorithm does
not need the subtraction.

Proposition 6.3 provides the algorithm for decoding (dklr) sequences.
The encoding operation, that is, given an integer I, find the vector xl with
inverse rank I = icS(xl) is given below.

Î := I, a := d;
for j = 1 to n do

if Î ≥ N0(n− j + 1) and a ≥ d

then xj := 0, Î := Î −N0(n− j + 1)
else if a < d

then xj := 0
else xj := 1, a := −1;

a := a+ 1;
end for

The computation of the weights N0(n) is an exercise in combinatorics.
An elegant computational method, which makes it possible to accurately
approximate N0(n) for large values of n, is based on generating functions
(see Section 6.3.3). Here we opt for a simple counting argument.

To that end, let U(n) be the number of (dk) sequences that start and
end with a ’1’. Then the following recursions are immediate:

U(n) =

0, if n ≤ 0,
1, if n = 1,∑k

i=d U(n− i− 1), if n ≥ 2.
(6.7)

The number of (dkr)-constrained sequences of length n, N0(n), is simply

N0(n) =
r∑

i=0

U(n− i). (6.8)

For n > d+ k we may verify the following recursion:

N0(n) =
k+1∑

i=d+1

N0(n− i). (6.9)

www.manaraa.com

144 CHAPTER 6. ENUMERATIVE CODING

6.3.1 Enumeration using floating-point arithmetic

The above coding and decoding algorithms lend themselves very well to
a sequential machine implementation. Buffering of the received message
will certainly be required whilst encoding and decoding, respectively, are
carried out. The encoding circuitry does not require a multiplier because the
codewords are binary valued and so the multiplications are simple additions.
Unfortunately, the reduction in storage requirements is penalized by an
increase in the difficulty of implementing the extra ’random’ hardware for
adding and comparing, which, of course, makes it less attractive when the
codewords are relatively small.

The hardware for implementing the enumeration process comprises a
(binary) adder, a subtractor, a comparator, and a look-up table of the
pre-computed set of weights {N0(i)}, 1 ≤ i ≤ n. The binary fixed-point
representation of the weights requires Rn bits, where R, 0 < R < 1, is a con-
stant. Therefore storage proportional to n2 is required, which is prohibitive
for the long codewords we have in mind. In the sequel, we will develop
an enumeration method where the weights are specified in finite-precision
floating-point notation.

The floating-point notation is convenient for representing numbers that
differ many orders of magnitude. In this notation, each weight is repre-
sented by s bits. As s grows with p + log n, p a positive integer, the hard-
ware required for weight storage and so on grows with n(p + log n) with
the codeword length n. The price tag attached to the finite-precision rep-
resentation of the weights is that it will entail a (small) loss in code rate. A
quantitative trade-off between the precision of the number representation
and concomitant code redundancy will be detailed in the next section.

We employ a two-part radix-2 representation

I = (m, e)

to express the weight
I = m× 2e,

where I, m, and e are non-negative integers. The two components m and e
are usually called mantissa and exponent of the integer I, respectively. The
translation of a weight into (m, e) is easily accomplished. From our context
it is easily seen that the exponent e of the weights N0(i), 1 ≤ i ≤ n, can
be represented by at most dlog2 Rne bits. With the following procedure we
ensure that the mantissa m is represented by p bits. Each weight can thus
be represented by s = dlog2Rne+p bits. There are various techniques such
as rounding and truncation for translating fixed-point representations into
floating-point representations. We choose here for a truncation operation
as it is, as will be shown later, compatible with the basic enumeration
algorithms.

www.manaraa.com

6.3. ENUMERATION OF (DKLR) SEQUENCES 145

Let I be the short-hand notation of one of the weights N0(i). It is well
known that the non-negative integer I, I < 2v, can be uniquely represented
by a binary v-tuple x = (xv−1, . . . , x0), where

I =
v−1∑

i=0

xi2
i.

The binary v-tuple x is called the binary fixed-point representation of I.
Let

u = blog2 Ic
be the position of the leading ’one’ element of x. Then the p-bit truncated
decimal representation of I, denoted by bIcp,

bIcp = b2−(u+1−p)Ic2u+1−p, (6.10)

can be represented in binary floating-point representation whose mantissa
requires at most p non-zero bits.

If the above finite-precision arithmetic is used in the enumeration algo-
rithms, we must modify the set of weights developed in the previous section.
To that end, let N̂0(i) denote the number of (dkr) sequences of length i
starting with a ’1’ that can be encoded with p-bit mantissa representation,
then

N̂0(i) =

{
N0(i), i ≤ p1
b∑k+1

j=d+1 N̂
0(i− j)cp, i > p1.

(6.11)

For convenience, it is assumed that N0(p1) < 2p, i.e. the smallest weights
N0(i), 1 < i ≤ p1, can be represented by a mantissa of p bits, and p1 ≥ k+d,
i.e. the range where the homogeneous recursion is valid. The encoding and
decoding algorithms developed in the previous section can be employed
directly by using the ’truncated’ coefficients N̂0(i) in lieu of N0(i). The
enumeration algorithm itself remains unchanged. The effect on the set of
codewords will be that recursively the N0(i) − bN0(i)cp highest ranking
(dkr) words of length i are discarded from the set of all lexicographically
ordered dkr sequences starting with a ’1’.

6.3.2 Effects of floating point arithmetic

Using finite precision of the weights representation (truncation) will result
in coding loss as available dklr words must be discarded. In this subsection
we will study quantitatively the coding loss.

The number of (dkr) sequences of a length n that start with a ’1’, N0(n),
n > k + d, satisfies the recurrence relation (see (6.9))

N0(n) =
k+1∑

i=d+1

N0(n− i).

www.manaraa.com

146 CHAPTER 6. ENUMERATIVE CODING

The number of (dkr) sequences grows exponentially with n, the growth
factor being λ = 2C(d,k). Recall that for sufficiently large n, the number
of (dkr) sequences of length n, N̂0(n), that can be encoded using a p-bit
mantissa representation is

N̂0(n) = b
k+1∑

i=d+1

N̂0(n− i)cp. (6.12)

Conceptually, the computation of the growth factor λ̂ of N̂0(n) and the
capacity Ĉ(d, k) = log2 λ̂ becomes very simple if we note that the sequence
behavior of the p-bit mantissa of N̂0(n) versus n can be described in terms of
an autonomous finite-state machine. The characteristic functions describing
the sequence behavior of the finite-state machine are implied by the recursive
equation (6.12). After a little thought the following proposition will become
clear.

Proposition 6.4 The capacity Ĉ(d, k) is rational.

Proof: From the theory of feedback registers [112] we know that the se-
quence of the mantissa of N̂0(n) will ultimately become (and remain) peri-
odic. That is, there are integers h and f such that for all sufficiently large
n

N̂0(n)2h = N̂0(n+ f). (6.13)

In other words, per cycle period of length f the number of sequences in-
creases with a fixed factor, which is equal to a power of two, 2h. From the
above it is immediate that

Ĉ(d, k) =
h

f
, (6.14)

which concludes the proof.

The theory of feedback registers [112] stipulates that the cycle period must
be smaller than 2p(k+2). As this number is huge in the range of parameters
of practical interest, we are inclined to believe that Proposition 6.4 is not of
great practical interest. However, results of a computer search, which are
listed in Table 6.1, reveal relatively small cycle periods (small denominators)
are surprisingly frequent. The above method for computing the capacity
Ĉ(d, k) has the virtues of precision and efficiency, but it does not provide a
very useful relationship between p and the capacity loss C(d, k) − Ĉ(d, k).
In the working range d = 1, . . . , 3, k À d, the loss in capacity resulting from
the truncation of the weights can be simply approximated by [154]

C(d, k)− Ĉ(d, k) ≈ 2−(p+2). (6.15)

www.manaraa.com

6.3. ENUMERATION OF (DKLR) SEQUENCES 147

Table 6.1: Capacity Ĉ(d, k) for selected values of d, k, and p.

d k C(d, k) p Ĉ(d, k) C(d, k)− Ĉ(d, k)
0 5 0.98811 7 62/63 0.00398
1 7 0.67929 8 40/59 0.00132
1 12 0.69299 9 9/13 0.00068
2 7 0.51737 9 61/118 0.00042
2 12 0.54711 7 6/11 0.00166
2 15 0.55011 11 11/20 0.00011
3 12 0.45555 7 5/11 0.00010

6.3.3 Very long block codes

In this section, we will take a look at the asymptotic behavior of the effi-
ciency of block codes based on Construction 1, 2, and 3 (see Section 5.4,
page 106) as a function of the word length. The number of (dklr) words,
Nc(n), of length n, available in one of the three constructions equals the
coefficient an of the following generating function (see Section 5.4.1, page
107):

∑
aix

i =
q(x)

p(x)
=

xβ+1(1− xl+1)(1− xr+1)

(1− x)(1− x− xd+1 + xk+2)
(6.16)

The parameters β, l, and r are stipulated by the construction recipe ci,
i = 1, 2, 3, where ci denotes Construction 1, 2, or 3, respectively. For large
codeword length n the number of codewords can be approximated by

Nc(n) ≈ Acλ
n, (6.17)

where λ is the largest real root of the characteristic equation

zk+2 − zk+1 − zk−d+1 + 1 = 0 (6.18)

and the constant Ac equals (see Appendix 6.6, page 157)

Ac = −λ
q(1/λ)

p′(1/λ)
. (6.19)

The constant Ac depends on the parameters l, r, and β, which, in turn, are
implied by the construction chosen. Note that the channel capacity C(d, k)
satisfies

C(d, k) = log2 λ.

www.manaraa.com

148 CHAPTER 6. ENUMERATIVE CODING

Forsberg [86] found after evaluating many examples by computer exper-
iments that the accuracy of (6.17) is surprisingly good. The rate of an
implemented code is

R =
1

n
blog2Nc(n)c. (6.20)

The difference between capacity and rate of the code satisfies

1

n
(−1 + log2Ac) ≤ R− C(d, k) ≤ 1

n
log2Ac. (6.21)

In Table 6.2 we have collected results of computations.

Table 6.2: Constant log2Ac for selected values of d and k. The terms
C1, C2, and C3 are short for Constructions 1, 2, and 3.

d k C(d, k) log2Ac1 log2Ac2 log2 Ac3

1 3 0.551 -1.062 -0.357
1 7 0.679 -0.771 -0.404
2 7 0.517 -1.265 -0.602 -0.375
2 10 0.542 -1.039 -0.661 -0.332
3 10 0.446 -1.393 -0.807 -0.680

From Table 6.2 we conclude that for the parameters of most practical in-
terest the constant log2Ac is in the range -0.5,...,-0.35. Thus a codeword
length of approximately n = 256 suffices to approach capacity to within
0.2-0.5%.

As an example, we have computed C(d = 2, k = 15) − R as a function
of the codeword length n. Results of computations are shown in Figure 6.2.
The diagram shows points for byte-oriented codes, i.e., codes whose source
word length log2bNc(n)c is a multiple of eight. We restricted ourselves
to byte-oriented codes to fit standard memory and code hardware. The
”raggedness” of the curve is caused by the truncation to the nearest power
of two.

The combined effects of the truncation and the finite codeword length
on the achievable rate can be conveniently approximated by

C(d, k)−R ≈ 1

2n
+ 2−(p+2). (6.22)

If both design parameters are chosen such that their relative effect on the
rate loss is equal, i.e. 2n = 2p+2, then we find the following fundamental
relationship between hardware (storage) requirements and efficiency of a
(long) dk code:

C(d, k)−R ≈ 1

n
. (6.23)

www.manaraa.com

6.3. ENUMERATION OF (DKLR) SEQUENCES 149

Preferably a ROM is used as a look-up table. Then the number of ROM
output bits, p, is one less than the number of input bits, dlog2 ne. To
some extent, the above results do not depend on the specified runlength
parameters d and k. As a rule of thumb, it can safely be concluded that
a design (in the main case of practical interest, where d < 3) of any (dk)-
constrained code whose rate is only 0.1% below capacity is possible with
hardware of a ROM look-up table having 10 input and 9 output bits. In
other words, with a hardware of 1 kByte ROM one can construct a block
code whose rate is marginally less than channel capacity.

100 1000
codeword length n

0.0001

0.0010

0.0100

C
-R

Figure 6.2: Redundancy C−R versus codeword length of codes based
on Construction 2 (upper curve) and Construction 3 (lower curve).
The runlength parameters are d = 2 and k = 15. The channel
capacity is C(2, 15) = 0.5501. Taken from [154]

In the above analysis it is tacitly assumed that storage is only needed for the
mantissa of the weights. The exponent of the weights must also be stored,
but as this additional storage is proportional to log n, it is neglected. It
should be appreciated that often a significant saving in storage hardware
can simply be realized by noting that the mantissa of the weights ultimately
becomes periodic.

By a judicious choice of k and p we may attempt to reduce the hardware
requirements by minimizing the cycle period. Table 6.1 on page 147 reveals
that short cycle periods (and thus small storage hardware) are possible for
values of d and k of practical interest. How to systematically approach the

www.manaraa.com

150 CHAPTER 6. ENUMERATIVE CODING

minimization of the cycle period is not clear yet. The effectiveness of the
new technique will be illustrated by a worked example.

6.3.4 Application to (k)-constrained sequences

The capacity C(0, k) equals log2(λ), where λ (see Section 4.3) is the largest
root of

xk+2 − 2xk+1 + 1 = 0. (6.24)

For sufficiently large k, we derive

λ ≈ 2(1− 1

2k+2
),

so that

C(0, k) ≈ 1− 1

ln 2
2−k−2, k À 1. (6.25)

Table 6.3 lists the redundancy 1 − C(0, k) versus the runlength parameter
k.

Table 6.3: Redundancy 1− C(0, k) versus k.

k 1− C(0, k)
1 0.30576
2 0.12085
3 0.05322
4 0.02477
5 0.01189
6 0.00581
7 0.00287

In Table 6.4 we have listed the maximum codeword length n̂, and redun-
dancy 1− 1/n̂ as a function of the maximum runlength parameter k when
the coefficients are not truncated. In order to maximize the number of
words, we have set r = dk/2e and l = k − r (see Section 5.4.2, page 108).
We see that the redundancy required is very close to the bound listed in
Table 6.3.

www.manaraa.com

6.3. ENUMERATION OF (DKLR) SEQUENCES 151

Table 6.4: Maximum codeword length n̂ for which a rate 1 − 1/n̂,
(0, k) code can be constructed.

k n̂
4 31
5 67
6 148
7 310
8 649

Table 6.5: Maximum codeword length n̂ for which a rate 1 − 1/n̂
(0, k) code, p = k + 2, can be constructed.

k n̂
4 26
5 54
6 112
7 232
8 474

The effect of weight truncation can be seen in Table 6.5, where we have listed
the maximum codeword length n̂ and redundancy 1− 1/n̂ as a function of
the runlength parameter k. The redundancy is only slightly larger than in
the case when a full representation of the weights (see Table 6.4) is used.

The mantissa of the weights N̂0(i) can be represented by at most p > k
bits if we use

N̂0(i) =

0, i ≤ 0,
2i−1, i = 1, . . . , r + 1,∑i−1

j=i−1−k N̂
0(j), i = r + 2, . . . , p+ 1,

2i−p−1b2p−i+1 ∑i−1
j=i−1−k N̂

0(j)c i > p+ 1.

(6.26)

In the special case, p = k + 2, we find that mantissa and exponent of
the floating-point representation of the weights are simple functions:

N̂0(i) =

2i−1, i = 1, . . . , r + 1,
(2r+1 − 1)2i−r−2, i = r + 2, . . . , k + 2,
(a0 − i)2i−k−3, k + 2 < i ≤ i1,

(6.27)

where
a0 = (2r+1 − 1)2k−r+1 + k + 2,
i1 = a0 − 2k+1.

The expressions for N̂0(i), i > i1, are too involved and therefore omitted.

www.manaraa.com

152 CHAPTER 6. ENUMERATIVE CODING

6.4 Error propagation

As we have seen in the previous section, the usage of long codewords makes
it possible to approach a code rate which is arbitrarily close to Shannon’s
noiseless capacity of the constrained channel. Single channel bit errors may
result in error propagation that could corrupt the entire data in the decoded
word, and, of course, the longer the codeword the greater the number of data
symbols affected.

In this section, a presentation is given of the effects of error propaga-
tion [163]. It is assumed that a binary source word, b is translated into a
binary codeword x using the enumeration algorithm. During transmission
of x a single error is made, i.e. we receive x′, dH(x,x′) = 1, where dH(x,y)
denotes Hamming distance between x and y. Translation using (6.6) will
result in the word b′ = iS(x

′) 6= b = iS(x), where b′ and b are the binary
representations of iS(x

′) and iS(x), respectively. In particular we are inter-
ested in dH(b, b

′) and the error burst length distribution. The error burst
length, b, is defined by b = nmax−nmin +1, where nmin and nmax denote the
smallest and largest positions where b′ and b differ.

If an error is made at position k of the codeword, then the decoder will
invoke (6.6) or Proposition 6.3 and form the inner product

iS(x
′) =

∑n
j=1 xjN̂(n− j) + aN̂(n− k)

= iS(x) + aN̂(n− k),

= b+ aN̂(n− k),

(6.28)

where a = 1 if xk = 0 or a = −1 if xk = 1. All additions (or subtractions)
are in binary notation. Clearly, severe error propagation can only occur if
the binary addition (or subtraction) of b = iS(x) and N̂(n− k) results in a
long carry.

An analysis of the error statistics can be made if we make some assump-
tions. It is assumed that the source word b is a random binary vector of
doubly infinite length. Secondly, the mantissa of a weight N̂(n − k) is the
binary p-vector y = (yp−1 . . . , y0). By definition yp−1 = 1. The remaining
(p− 1) elements are assumed to be random. If the above assumptions hold,
the next theorem provides the error burst length distribution.

Theorem 6.1 The error burst length distribution, q(b), is given by

q(b) =

(
1
2

)p
, b = 1,

(
1
2

)p−b+2
, 2 ≤ b ≤ p,

(
1
2

)b−p+1
, b > p,

(6.29)

and q(b) = 0 for b ≤ 0.

www.manaraa.com

6.5. ALTERNATIVES TO STANDARD CODES 153

Proof: See [163].

From Theorem 6.1 it is clear that the most likely burst has a length of p or
p + 1 bits with probability q(p) ≈ q(p + 1) ≈ 1/4. Error bursts longer or
smaller than p or p+ 1 have an exponentially decaying probability.

0 5 10 15
b

0.01

0.10

1.00

P
(b

)

simulation

theory

Figure 6.3: Comparison of error burst distribution for d = 2 and
p = 9. After Immink & Janssen [163].

Figure 6.3 compares the results of computations of a typical example of
computer simulations and computations using (6.29). The figure shows rea-
sonable agreement of the theoretical distribution (6.29) with the distribution
obtained by simulation. Thus we can control error propagation by a proper
choice of p. The choice of the parameter p has an effect on the maximum
achievable code rate (see (6.15)). With (6.29) and (6.15) a trade-off has to
be made between, on the one hand, the error propagation effects, which has
a bearing on the required capability of the error control code, and, on the
other hand, the rate of the constrained code. This is a very subtle trade-
off requiring a detailed specification of the various coding layers, and has
therefore not been pursued.

6.5 Alternatives to standard codes

In order to limit error propagation inherent in long codes, various coding
configurations have been developed, which do not follow the standard ’Fig-
ure 1’ coding format as described in the Introduction to this book. In ’Figure

www.manaraa.com

154 CHAPTER 6. ENUMERATIVE CODING

1’, see Figure 1.1, page 3, source data are translated in two successive steps:
(a) error-correction code (ECC) and (b) recording (or channel) code. The
ECC encoder generates parity check symbols. The source data plus par-
ity check symbols are translated into a constrained output sequence by the
recording code, and the constrained output sequence, in turn, is stored on
the storage medium.

Bliss [37], Fitinghof & Mansuripur [83], McMahon et al [243], Fan &
Calderbank [79], and Immink [154] have proposed to revert the ‘Figure 1’
order of application of the error-correction code and the channel code. In
the sequel, it is assumed that a long code is used in conjunction with a byte-
oriented Reed-Solomon (RS) ECC. Reggiani & Tartara [288] have presented
a study on a decoding procedure of the ’reverted’ coding scheme. A block
diagram of Bliss’ scheme is shown in Figure 6.4.

source data

constrained sequence

to channel

ECCencoder

1st channel code

2nd channel code

parity check

Figure 6.4: Code configuration of post-modulation or ‘Bliss’ scheme’.

In Bliss’ coding format, a block of user data is translated, using a first con-
strained code, into a (long) constrained codeword. Then the constrained
codeword is grouped into bytes and treated as input data of the RS error
correcting code in the usual way. Parity bytes are generated under the rules
of the RS code. The parity bytes thus generated do not, in general, obey
the prescribed constraints and they are translated with the aid of a second
constrained code. Provisions have to be made for concatenating the various
segments. Decoding is straightforward. We start by decoding the parity
information using the second channel code decoder. After a correction of
possible errors in the constrained sequence, the corrected sequence is for-
warded to the first constrained decoder, which, in turn, delivers the source
sequence. Note that, unless the ECC decoder is overloaded, the input of the
first constrained decoder is free of errors, and as a consequence there is no
error propagation at this point. It is of paramount importance that the error
propagation of the second channel code is limited to a few bits, preferably

www.manaraa.com

6.5. ALTERNATIVES TO STANDARD CODES 155

to one or two bytes in a byte-oriented system. In principle, codes developed
with the state-splitting algorithm or other constructions presented in Chap-
ter 7 can be used, but usually additional buffering is required for cascading
the various segments.

The efficiency of the second channel code is, as it is assumed that its
length is smaller than that of the first channel code, (usually) lower than
that of the first code. However, as the number of parity bytes is normally
a small fraction of the number of input bytes, the efficiency of the second
code has a relatively small bearing on the overall efficiency.

6.5.1 Burst error correction

In the above ‘Bliss’ scheme’, the constrained sequence is the input of the
ECC code. Clearly, the constrained sequence is a factor of 1/R1 longer than
the source data, where R1 is the rate of the 1st channel encoder. Since the
ECC operates on channel bytes, the corresponding number of user bytes
it can correct is diminished by a factor of R1. For recording systems this
implies that the burst error correction capability measured in geometrical
units, e.g. meters, is reduced by the same factor R1. The length of the
constrained sequence instead of the user sequence must be smaller than the
maximum imposed by the RS code at hand.

source data

constrained sequence

to channel

ECCencoder

1st channel code

2nd channel code

parity check

intermediate data

lossless compression

Figure 6.5: Encoder configuration of the new coding scheme.

www.manaraa.com

156 CHAPTER 6. ENUMERATIVE CODING

The above drawbacks of Bliss’ scheme are so severe, in particular when
R1 is low, that in spite of its efficiency benefits, it is of limited practical
usefulness in recording systems, where correction of burst errors is a major
requirement. These difficulties can be solved by reconfiguring the codes
and defining a third intermediate coding layer. The new encoding format
is shown in Figure 6.5. Essentially, the constrained sequence is compressed
into a third intermediate sequence before it is forwarded to the ECC en-
coder. The constrained sequence is partitioned into blocks of q bits. The
block size q is chosen so that the number of distinct constrained sequences
of length q is not larger than N , the field size of the symbol error correct-
ing ECC. Then it is possible to define a one-to-one mapping between the
q-tuples and the ECC symbols.

constrained sequence

from channel

ECCdecoder

1st channel decoder

2nd channel decoder

intermediate data

lossless compression

constrained sequence

corrected data

decompression

to sink

Figure 6.6: Decoder configuration of the new coding scheme.

Using a small look-up table L, or enumeration, the q-tuples are uniquely
translated into an intermediate sequence of bytes. The number of bytes so
generated is slightly larger than the original number of source bytes. The
intermediate sequence, in turn, is used as the input of the ECC encoder and
the parity check bytes are generated as usual. It should be appreciated (see
Figure 6.5) that the intermediate sequence is not transmitted. As in Bliss’
scheme, the parity check bytes are encoded by a 2nd constrained code. The

www.manaraa.com

6.6. APPENDIX: ASYMPTOTICS 157

cascaded sequence, i.e. the constrained sequence followed by the constrained
parity bytes, is eventually transmitted. Decoding is straightforward, as can
be seen in Figure 6.6, which shows a diagram of the set-up. First, the parity
symbols are found using the second channel decoder. Then, after the ECC
decoding operation, the corrected bytes are translated into the constrained
sequence using the inverse of the look-up L. The corrected constrained
sequence is decoded by the 1st channel decoder.

Though the loss in burst error correcting capacity of the new construc-
tion is much less than that of Bliss’ scheme, Figure 6.4, there is still some
loss with respect to the conventional ’Figure 1’ construction. The loss is
simply the ratio of the lengths of the compressed sequence and the source
sequence. It can easily be verified that q = 11 is the largest word length
for which the number of d = 1, k = 12 sequences of a length q is less or
equal 256. Thus the compression scheme translates the 371-bit dk sequence
into d371/11e = 34 bytes. The expansion of the ECC input sequence, with
respect to the conventional ”Figure 1” configuration, is thus 34/32 = 1.06.

Using Construction 3, it is possible to design a rate 256/466, (2,15)
code, p = 11, whose efficiency is R/C(2, 15) = 0.9986. The rate of the new
code is almost 10% larger than that of the traditional rate 1/2, (2,7) code.
A possible lossless compression scheme has an input word length q = 13.
Then the 466-bit input sequence is translated into d466/13e = 36 bytes,
which results in an expansion factor of 36/32 = 1.125. Alternatively, we
may opt for a more complex compression scheme, which translates q = 28
bits into 2 bytes. This results in a smaller expansion factor, 1.06, but the
increased error propagation (a single channel bit error may result in two
decoded byte errors) puts an extra load on the ECC. The trading of the
various parameters is a subtle matter requiring more study.

Fan, Marcus & Roth [80] showed that sliding-block compression schemes
can be constructed. They disclosed, among others, a compression scheme
of compression ratio 4/7 that can be used to compress (d = 2, k = ∞)
sequences. The slightly increased error propagation of sliding-block com-
pression seems negligible.

6.6 Appendix: Asymptotics

Assume a generating function, T (x), can be written as the quotient of two
polynomials, or

T (x) =
q(x)

p(x)
=

∑
cnx

n,

and that the polynomials p(x) and q(x) do not have factors in common. Let
p(x) have distinct roots and let the degree of p(x) be m, then we can write

www.manaraa.com

158 CHAPTER 6. ENUMERATIVE CODING

down p(x) as a product of factors, namely

p(x) = K
m∏

i=1

(1− λix). (6.30)

If the degree of q(x) is smaller than m, we may write

T (x) =
q(x)

p(x)
=

m∑

i=1

Ai

(1− λix)
. (6.31)

By observing that 1/(1−λix) can be expressed as a geometric series we can
write T (x) as

T (x) = A1(1 + λ1x+ λ2
1x

2 + . . .) + A2(1 + λ2x+ λ2
2x

2 + . . .) +

We easily find that the coefficient cn equals

cn = A1λ
n
1 + . . .+ Amλ

n
m.

Let for clerical convenience λ = λ1 then

cn = A1λ
n(1 +

A2

A1

(
λ2

λ

)n

+ . . .+
Am

A1

(
λm

λ

)n

).

Assume λ is the largest of all λi, then we get the asymptotic relationship

cn ≈ A1λ
n.

An estimate of A1 is given below. If we multiply (6.31) with (1 − λx) and
set x = 1/λ, the only surviving term is the A = A1 term. Therefore we
have

A = lim
x→1/λ

T (x)(1− λx) = lim
x→1/λ

q(x)

p(x)
(1− λx).

Now note that

p(x)

1− λx
=

p(x)− p(1/λ)

1− λx
= −1

λ

p(x)− p(1/λ)

x− 1/λ

Now let x → 1/λ then we find

p(x)

1− λx
= −p′(1/λ)

λ
.

As p(x) has a single zero at x = 1/λ, we conclude p′(1/λ) 6= 0. As q(x) →
q(1/λ) if x → 1/λ, we find

lim
x→1/λ

q(x)

p(x)
(1− λx) = −λ

q(1/λ)

p′(1/λ)
.

The constant A is

A = −λ
q(1/λ)

p′(1/λ)
, (6.32)

so that

cn ≈ − q(1/λ)

p′(1/λ)
λn+1. (6.33)

www.manaraa.com

Chapter 7

Sliding-Block Codes

7.1 Introduction

As we have learnt in the preceding chapter, attempts to increase the effi-
ciency of block codes result in increased codeword length, and thus in rapidly
mounting coder and decoder complexity. Codes that can be decoded with
sliding-block decoders have, as we will demonstrate a high efficiency, small
hardware, and not too many drawbacks. As will be discussed in Section 7.2,
a sliding-block decoder observes the n-bit codeword plus r preceding n-bit
symbols plus q later n-bit symbols. The decoder comprises a (r+1+q)-stage
shift register and decoder logic. The quantity w = r + 1 + q is often called
the window size of the decoder. A drawback of codes decoded by a sliding-
block decoder is error propagation as the decoding operation depends on
r + q + 1 consecutive codewords. In practice, the increased efficiency and
reduced hardware of sliding-block decoder outweigh the extra load on the
error correction unit. There are various coding formats and design methods
for constructing such codes.

Variable-length codes, or, in short, VL codes, are excellent examples of
a type of codes that can –if proper measures have been taken– be decoded
with a sliding-block decoder. Such codes often permit a marked reduction
in coder and decoder complexity relative to a fixed-length code of like rate
and sequence properties. VL codes have the disadvantage that blocks of
information will be translated into sequences of –indeed– variable length.
In synchronous VL codes, on the other hand, the source words and the
codewords are of variable length, but the quotient of the lengths of a source
word and its associated codeword is fixed, so that blocks of information
will be translated into blocks of encoded data of fixed length. The basis of
VL synchronous codes was laid by Franaszek [96]. VL synchronous codes
will be discussed in Section 7.3. Thereafter, in Section 7.4, we will discuss
look-ahead encoding techniques, where the generated codeword is a function
of the source word, the encoder state, and a limited number of upcoming

159

www.manaraa.com

160 CHAPTER 7. SLIDING-BLOCK CODES

source words. In Section 7.5, we will discuss the sliding-block code algo-
rithm, usually called ACH algorithm after the creators of the algorithm,
Adler, Coppersmith & Hassner [2]. The design algorithm guarantees to find
constrained codes, whose rate, m/n, is less or equal than channel capacity.
The code found using the ACH algorithm has the virtue that it can be
decoded with a sliding-block decoder of finite size (and thus limited error
propagation). The ACH algorithm is a great step in the history of con-
strained code design. In the next section, we will start with a description
and properties of the sliding-block decoder.

7.2 Description of a sliding-block decoder

A decoder observes the encoded sequence, usually after it has been trans-
mitted or stored, and translates it into, hopefully, the original source se-
quence. Firstly, the received sequence is partitioned into n-bit codewords.
Traditionally the partitioning of the received sequence, the synchronization
arrangement, is said not to be part of the decoder’s function, and we will
tacitly assume that such a partitioning has taken place elsewhere. A state-
dependent decoder translates a string of n-bit codewords into a string of
m-bit source words. The encoder state is not, as such, transmitted by the
sender, and therefore the translation depends on an estimate of the encoder
state. As error correction usually takes place after this stage of (constrained)
decoding, the decoder has to deal with possible channel errors that were
made during transmission or storage. A state-dependent decoder could lose
track of the encoder state sequence with the result that the decoder will gen-
erate an unbounded string of errors. Clearly, a state-dependent decoder is
prone to severe error propagation as there is no guarantee that the decoder
will ever again find the correct encoder’s state.

Table 7.1: Codebook of three-state R = 1/2 code.

β h, g(σ1, β) h, g(σ2, β) h, g(σ3, β)
00 0110, σ1 0110, σ2 0110, σ3

01 1001, σ1 1001, σ2 1001, σ3

10 1010, σ2 1010, σ3 0011, σ1

11 1100, σ3 0101, σ1 0101, σ2

A practical decoder should have the property that any finite number of input
errors gives rise to a finite number of output errors. A simple example of a
code that allows such a decoder is a code that solely requires an n-bit code-
word as an input to regenerate the m-bit source word. The state-dependent

www.manaraa.com

7.2. DESCRIPTION OF A SLIDING-BLOCK DECODER 161

translation of source words {βu} into codewords {χiu} with the output
function h(σi,βu) must preferably have an unambiguous inverse mapping
h−1(χiu) = βu without reference to the encoder state σi. Let us take a
look at the encoder table in Table 7.1, which describes a state-dependent
encodable encoder. It can easily be verified that this state-dependent code
can be decoded state-independently using a block decoder with the Boolean
table presented in Table 7.2. Observation of single 4-bit code words makes
it possible to uniquely retrieve the source message without referring to the
encoder state, or an estimate of the encoder state.

Table 7.2: Decoding table of three-state R = 1/2, code.

χ β
0110 00
1001 01
1010, 0011 10
1100, 0101 11

A more general type of decoder requires besides the n-bit codeword, r past
n-bit symbols plus q future n-bit symbols for uniquely translating the n-
bit codeword into the source word. Such a decoder is called a sliding-block
decoder.

Decoder logic

m bits

n bits

Figure 7.1: Schematic diagram of a sliding-block decoder. A source word
is retrieved after observing the current, r past, and q future codewords.

Figure 7.1 shows a schematic diagram of a sliding-block decoder. Essentially
the decoder comprises a w = (r + 1 + q)-stage shift register and decoder
logic. We will refer to the quantity w as the window size of the decoder.
A drawback of codes that are decoded by a sliding-block decoder is error
propagation as the decoding operation depends on r + q + 1 consecutive

www.manaraa.com

162 CHAPTER 7. SLIDING-BLOCK CODES

codewords. Clearly, single errors at the input to a sliding-block decoder
have a finite error propagation as the erroneous words will be shifted out
after (r + 1 + q) clock periods. The next example shows a typical instance
of a code that requires a sliding-block decoder of window size w = 2.

Example 7.1 Consider the rate 1/2, code with the codebook shown in Ta-
ble 7.3. The code can be implemented with a 2-state encoder.

Table 7.3: Encoding table of two-state R = 1/2, code.

β h, g(σ1,β) h, g(σ2,β)

0 00, σ1 01, σ1
1 00, σ2 10, σ1

It can easily be verified that the output sequence generated by the encoder has
at least two ’zeros’ between consecutive ’ones’. Note that in state σ1 the source
words ’0’ and ’1’ are both represented by ’00’, and that, thus, the observation of a
single 2-bit codeword is not sufficient to retrieve the source word. Perusal of the
encoding table shows that the codeword ’00’ when it represents the source word
’0’ is followed by the codewords belonging to state σ1, i.e. codeword ’00’. The
codeword ’00’ representing the source word ’1’ is always followed by codewords of
state σ2, namely ’10’ or ’01’. Therefore the decoding ambiguity can be resolved by
looking ahead one 2-bit codeword. Thus in the above terminology we have q = 1
and r = 0. The codewords ’10’ and ’01’ can be decoded without look-ahead.

Table 7.4: Decoding table of two-state R = 1/2, code.

χt χt+1 βt

00 01 1
00 10 1
00 00 0
10 don’t care 1
01 don’t care 0

The decoding table is shown in Table 7.4, where χt, χt+1, ... denotes the string

of codewords received at instants t, t+ 1 etc.

7.3 Variable-length (VL) codes

Variable-length (VL) (sometimes called variable-rate) codes can easily be
designed, as can be seen from the example given in Table 7.5, which con-
stitutes a (1,∞) RLL code. Similar codes can be written down for other

www.manaraa.com

7.3. VARIABLE-LENGTH (VL) CODES 163

runlength constraints as well. Lossless source codes can be used as variable-
length RLL codes as was demonstrated by Kerpez [201]. If it is assumed
that the input data of the code listed in Table 7.5 is ’random’, i.e. the
source 1s and 0s are independent and occur at probability 1/2, then the
average rate of the above code is 2/3, which is only a few percent below
channel capacity. The above scheme can be seen as a bit stuffing method,
where a ’0’ is inserted, ’stuffed’, after every source ’1’. Though this code is
very simple, there are, unfortunately, some serious practical drawbacks. In
real life, input data is seldom random, and as a result, for example, if the
input data would consist of the all ’1’s string the ’rate’ of the code would be
1/2. In other words, the code is very sensitive for worst case inputs. In an
effort to transform the incoming data stream into a form that is amenable
to variable-length encoding the incoming data stream is first randomized
using, for example, a pseudo-random binary sequence, which is ’exclusive-
OR’ed with the incoming data stream to give the resulting output a random
or pseudo-random character.

Table 7.5: Variable-length (1,∞) code.

Data Code
0 ← → 0
1 ← → 10

The randomization procedure is usually executed by a scrambler or even
multiple scramblers, see Section 10.2.1 or [112, 217]. If it is assumed that
the scrambled data is sufficiently random, then the length of the output
string is a random variable. This makes it difficult to practically realize a
system that works with fixed-length blocks required in hard-disk drives or
optical storage systems. It has also been found that in certain instances,
when the incoming data pattern has a characteristic that correlates with
the pseudo-random binary sequence (i.e. the scrambler polynomial) in such
a way as to produce undesirable encoded characteristics, the randomization
using that polynomial does not act to prevent the length of the VL output
sequence being statistically too long. A data stream having this character-
istic is typically referred to as a degenerate pattern. Simply the possibility
of occurrence of such a degenerate pattern has generally been considered as
an impediment to the use of VL coding systems in the data storage environ-
ment. The usage of a high-rate variable length (0, k) code, where multiple
scramblers are used to circumvent the effects of degenerate patterns, has
been reported in the literature [114, 250]. Though it is not impossible to
accommodate output blocks of variable length, it is not very difficult, as will
be shown shortly, to design very efficient codes that do generate fixed-length

www.manaraa.com

164 CHAPTER 7. SLIDING-BLOCK CODES

output blocks. So one could well argue that there is no practical need for
such variable-length codes as shown in Table 7.5. VL codes that generate
output blocks of fixed length are termed synchronous variable length (VL)
codes.

The structure of VL synchronous codes is very similar to that of fixed-
length codes. Various special features, however, arise from the presence of
words of different lengths. The requirement of synchronous transmission,
coupled with the assumption that each word carries an integer number of
information bits, implies that the codeword lengths are integer multiples
of a basic word length n, where n is the smallest integer for which the bit
per symbol ratio m/n is that of two integers. One might argue that the
problem, as discussed above, of generating sequences of variable length that
do not fit into a fixed length frame format, is not completely solved by
the adoption of synchronous VL codes. That is true, but in most practical
codes the maximum codeword is small, and usually a special structure can
be designed for a proper termination of the sequence. For an example
see [24].

In the next section, we will discuss this important type of codes.

7.3.1 Synchronous variable-length RLL codes

The existence of a VL synchronous code having certain specifications can
be established with a modification of Franaszek’s recursive procedure, see
Section 5.3.1, page 100. To apply Franaszek’s modified recursive procedure,
a basic codeword length n and source word length m are chosen. Codewords
may be of length jn, j = 1, 2, . . . ,M , where Mn is the maximum codeword
length. The routine involves operations on powers of the adjacency matrix,
which is reminiscent of Franaszek’s recursive procedure for designing bock
codes. As in the original recursive procedure, the objective is to find a set
of principal states. If the recursive procedure is successful, the outcome is a
set of principal states, denoted by Σp, from which coding may be performed.

Decoding of the VL codes to be discussed can be effected without ex-
plicitly knowing where the blocks of variable length start or end, that is,
the codes are self-punctuating (the n-bit synchronization is supposed to
be maintained by a separate device). The codes are self-punctuating, be-
cause they satisfy the prefix condition. A VL synchronous code is a set of
S = {c0, . . . , cM−1} of M strings. If a codeword cu ∈ S is not the beginning
of cv ∈ S for any u 6= v and for all u, then the code is called a prefix code.

7.3.2 Examples of synchronous VL codes

The above recursive algorithm can be programmed quite easily. There is,
however, a method that gives more insight. Assume the design of a rate

www.manaraa.com

7.3. VARIABLE-LENGTH (VL) CODES 165

m/n, (d,∞) code. Write down all words of length n that end with d ’0’s.
Then write down all words of length 2n that end with d ’0’s and do not have
said n-bit words as a prefix. Repeat this procedure for codewords of length
jn, j = 3, . . . M , until sufficient words have been found. A (d, k < ∞) code
can be constructed as follows.

Write down all (dklr) sequences, l+r = k of length n, 2n, 3n, . . ., where
we prohibit those words that have a prefix equal to a shorter word that was
already written down; the all ’0’s word, ’0...0’, is excluded. The value of
l < k is chosen by trial and error. Three excellent representatives of prefix
VL synchronous codes, to be discussed in the following case studies, are due
to Franaszek [90].

Rate 1/2, (1,∞) code

We choose the same runlength parameters as in Example 5.2, page 102,
namely d = 2, k = ∞. As shown in Example 5.2, the minimum codeword
length of a rate 1/2 block-decodable code is n = 14. This code needs a look-
up table of 128 entries for encoding and decoding. With the above VL code
algorithm, a code comprising only three words can be easily constructed
with m = 1 and n = 2, as shown in Table 7.6.

Table 7.6: Variable-length synchronous R = 1/2, (2,∞) code.

Data Code
0 ← → 00
10 ← → 0100
11 ← → 1000

If the input symbol is ’0’, ’00’ would be transmitted. Otherwise, the encoder
would transmit either ’0100’ or ’1000’ depending on whether the next symbol
is a ’0’ or a ’1’, respectively. By inspection it is clear that the three variable-
length codewords can be cascaded without violating the d = 2 channel
constraint. Note that the code satisfies the prefix condition.

Table 7.7: Finite-state machine description of simple rate 1/2, (2, ∞)
variable-length synchronous code.

βi h(σ1,βi) g(σ1,βi) h(σ2,βi) g(σ2,βi)
0 00 σ1 01 σ1

1 00 σ2 10 σ1

www.manaraa.com

166 CHAPTER 7. SLIDING-BLOCK CODES

The encoding scheme of VL synchronous codes may be readily implemented
in practice. Alternatively, the above scheme can be described in terms of a
2-state finite-machine encoder, whose characteristics are shown in Table 7.7.

The above elementary example illustrates quite well the great advantage
of the VL synchronous coding approach in terms of hardware, and it actu-
ally shows how the fixed-length block code with a 128-word dictionary (see
Example 5.2, page 102) may be replaced by one with only three words.

Rate 1/2, (2,7) code

The VL code pointed out in the previous example can be slightly modified
to incorporate a maximum runlength constraint k. Table 7.8 discloses the
code table of the rate 1/2, (2,7) code, which constituted the bedrock of
high-performance hard-disk drives [145].

Table 7.8: Variable-length synchronous rate 1/2, (2,7) code.

Data Code
10 ← → 1000
11 ← → 0100
011 ← → 000100
010 ← → 001000
000 ← → 100100
0011 ← → 00100100
0010 ← → 00001000

The codebook comprises seven codewords that start with at most l = 4
and end with at most r = 3 ’zero’s. The encoding of the incoming data is
accomplished by dividing the source sequence into 2-, 3-, and 4-bit partitions
to match the entries in the code table and then mapping them into the
corresponding channel representations. The next example describes how
the codebook is to be used. Let the source sequence be 010111010, then
after the appropriate parsing, we obtain

in : 010 11 10 10 ...,

which, using Table 7.8, is transformed into the corresponding output se-
quence

out : 001000 0100 1000 1000

The companion Table 7.9 shows the same codewords and a permutation of
the codeword assignments (there are 24 permutations of the above corre-
spondences). It is worth pointing out here that the assignment rules found

www.manaraa.com

7.3. VARIABLE-LENGTH (VL) CODES 167

by Eggenberger & Hodges [72], which at first sight seem (again) quite arbi-
trary, are the outcome of a judicious choice, which will become clear in the
following.

The code satisfies the prefix condition and is therefore self-punctuating.
In the case of Table 7.9, decoding of the received message can be achieved
with a sliding block decoder of length four (2-bit) words. Error propagation
is limited: any error in a received bit may entail a decoding error in up
to two subsequent data bits, the current data bit and up to one preceding
data bit. Thus, no error in a received bit is propagated beyond at maximum
four decoded data bits. Detailed computations of the effects of shift error
propagation of the (2,7) code have been conducted by Howe and Hilden
[144].

Table 7.9: Variable-length synchronous rate 1/2, (2,7) code.

Data Code
10 ← → 0100
11 ← → 1000
011 ← → 001000
010 ← → 100100
000 ← → 000100
0011 ← → 00001000
0010 ← → 00100100

The code listed in Table 7.8, originally presented by Franaszek [90], has
the drawback that it needs a shift register of length six 2-bit words, which
increases error propagation to at most six decoded symbols. This instance
demonstrates that the allocation of codewords in a VL code may have a
crucial effect on the error propagation characteristic of the code. How the
assignments should be chosen in order to minimize error propagation is up
till now an unsolved problem.

Perusal of Table 5.6, page 104, reveals that the shortest fixed-length
block code that generates a rate 1/2, (2,7) code has codeword length 34.
Evidently, the VL synchronous code is much more attractive with respect
to hardware requirements.

Rate 2/3, (1,k) codes

After the previous examples of rate 1/2, d = 2 codes, the design of a rate
2/3, (1,∞) code is elementary. Write down all (d = 1) constrained words
of length three that end with a ’0’, i.e. ’000’, ’010’, and ’100’. Then write
down all words of length six that end with a ’0’ and do not have said 3-bit

www.manaraa.com

168 CHAPTER 7. SLIDING-BLOCK CODES

words as a prefix. There are four codewords that satisfy these conditions,
namely ’001000’, ’001010’, 101000, and ’101010’. We tag source words, and
the result, a code comprising seven codewords of length 3 and 6, is shown
in Table 7.10.

Table 7.10: Variable-length synchronous R = 2/3, (1,∞) code.

Data Code
00 ← → 000
01 ← → 010
10 ← → 100
1100 ← → 001000
1101 ← → 001010
1110 ← → 101000
1111 ← → 101010

Table 7.11: Variable-length synchronous R = 2/3, (1,8) code.

Data Code
00 ← → 010
01 ← → 100
1000 ← → 101000
1001 ← → 101010
1010 ← → 001000
1011 ← → 000100
1100 ← → 000010
1101 ← → 001010
111000 ← → 000001010
111001 ← → 000001000
111010 ← → 000101010
111011 ← → 000101000
111100 ← → 001001010
111101 ← → 001001000
111110 ← → 101001010
111111 ← → 101001000

We will now construct a rate 2/3, (1,8) code. The design runs in a similar
vein. The all ’0’s word cannot be used. Now we write down all (dklr)
sequences, l+ r = k of length 3, 6, . . ., prohibiting those words that have a
prefix equal to a shorter word that was already written down. The value of

www.manaraa.com

7.3. VARIABLE-LENGTH (VL) CODES 169

l < k is chosen by trail and error. In the rate 2/3, (1,8) code, words start
with at most l = 5 ’0’s and end with at most r = 3 ’0’s. This example
of a VL synchronous code was given by Franaszek [90]. The coding table,
comprising 16 words of length 3, 6 and 9, is presented in Table 7.11. No
attempts have been made to optimize the coding table for minimum error
propagation or other virtues. Note that if we choose, for symmetry reasons,
l = r = 4, a rate 2/3, (1,8) code can only be constructed if we allow words
of length 12. A rate 2/3, (1,7) code, whose details are omitted, can be
constructed by choosing l = 4 and r = 3. The code consists of 32 words of
length 3, ..., 18. Decoding of the above VL prefix codes can be accomplished
by a sliding block decoder. Table 7.12 presents the parameters of variable-
length codes that have been published in the literature, see Gabor [106],
Franaszek [89], Kobayashi [208], Horiguchi, and Morita [143]. A variable-
length encoder can always be cast in the standard format of a finite-state
machine encoder, which does not mean that a finite-state machine encoder
is the preferred embodiment of an encoder.

Table 7.12: Parameters of published RLL codes.

d k m n M R
0 2 4 5 1 4/5
0 3 9 10 1 9/10
1 3 1 2 1 1/2
1 7 2 3 2 2/3
2 7 1 2 4 1/2
3 7 2 5 8 2/5
4 14 4 11 3 4/11
5 17 1 3 6 1/3

A few remarks are in order regarding the usage of VL synchronous codes
in the fixed-length prefix synchronized frame format. In magnetic or opti-
cal mass storage systems, the coded information is commonly grouped in
large blocks, called frames. At the beginning of each frame we will find the
synchronization pattern, which is used by the receiver to identify the frame
boundaries. The problem is that the encoded data must fit into the interval
provided, and that the VL synchronous encoder looks ahead a limited num-
ber of source words. This difficulty can be overcome by defining substitute
encoder and decoder tables that are used just prior to the occurrence of a
sync pattern.

www.manaraa.com

170 CHAPTER 7. SLIDING-BLOCK CODES

7.4 Look-ahead encoding technique

Another class of design techniques documented in the literature [220, 172,
274, 62, 174, 91, 88] is called future-dependent or look-ahead coding. Notably
Hollmann [139] presented major contributions to the art. A block code is
said to be look-ahead if the encoding operation of a current block may
depend on upcoming symbols. In a generalization of this type of codes,
called bounded-delay encodable codes [92, 93, 94] codewords may also depend
on the current state of the channel and on past as well as future symbols.
This technique has been used to produce several practical and efficient RLL
codes.

The code design is guided by the approximate eigenvector inequality.
The approximate eigenvector also plays a key role in another design method,
the ACH algorithm, see Section 7.5. Let the code rate be m/n < C(d, k),
where m and n, m < n, are positive integers, and let D denote the N ×N
adjacency matrix. An approximate eigenvector v is a non-negative integer
vector, in this context not necessarily two-valued, satisfying

Dnv ≥ 2mv. (7.1)

If the matrix Dn does not have a submatrix with row sums at least 2m, then
some component v will be larger than unity and look-ahead is required. If
λ is the largest positive eigenvalue of the connection matrix D then by the
Perron-Frobenius theory, there exists a vector v whose entries vi are integers
satisfying (7.1), where n/m ≤ log2 λ. The following algorithm, taken from
Adler et al. [2], is an approach to finding such a vector.

Choose an initial vector v(0) whose entries are v
(0)
i = L, where L is a non-

negative integer. Define inductively

v
(u+1)
i ≡ min

v

(u)
i , b(2−m

N∑

j=1

[D]nijv
(u)
j)c

 . (7.2)

Let
v ≡ v(u),

where u is the first integer such that v(u+1) = v(u). There are two situations:
(a) v > 0 and (b) v = 0. Case (a) means that we have found an approximate
eigenvector, and in case (b) there is no solution, so we increase L and start
from the top again. There may be multiple solutions for the vector v.
Hollmann [140] showed that the choice of v may affect the complexity of the
code so constructed. The largest component of v determines the maximum
look-ahead span, and the presence in v of any entries that are not powers of
two complicates the coding rules. After finding an approximate eigenvector
by invoking (7.2), it is sometimes possible to find a better eigenvector by

www.manaraa.com

7.4. LOOK-AHEAD ENCODING TECHNIQUE 171

a systematic trial and error method . If the components of v are all zeros
and ones, no look-ahead is required, and we may immediately construct
the encoder as outlined in Section 5.3, page 99. In Section 5.7, page 122,
various worked examples of look-ahead block-decodable codes can be found.
An example of a code design based on the look-ahead method is the rate
2/3, (1,7) code to be detailed in the next section.

7.4.1 Rate 2/3, (1,7) code

Jacoby & Kost [174, 61] described a rate 2/3, (1,7) code with full-word
look-ahead used in a particular magnetic disc drive. A similar code was
found by Adler, Hassner & Moussouris [3] using the ACH algorithm (see
Section 7.5, page 172). To better understand the 2/3-rate look-ahead code,
we commence with the basic encoding table, presented in Table 7.13.

Table 7.13: Basic coding table (1,7) code.

Data Code
00 101
01 100
10 001
11 010

The 2/3-rate code is quite similar to a fixed-length block code, where
data words of 2 bits are converted into codewords of 3 bits. The basic
encoding table lists this conversion for the four basic source words. En-
coding is done by taking one source word at a time and always looking
ahead to the next source word. After conversion of the source symbols to
code symbols, and provided there is no violation of the d constraint at the
codeword boundaries, the first codeword (the first three bits) will be made
final. There is always the possibility that the last word, up to the point
reached in the encoding process, may change when we look ahead to the
next word. When the d constraint is violated, there are four combinations of
codewords that indeed may lead to this, we require substitutions in order to
eliminate successive ’one’s. The process of substitutions in these four com-
binations is revealed in Table 7.14. Error propagation during decoding is
limited to five consecutive data bits. The encoding rules of Tables 7.13 and
7.14 can be cast into finite-state machine having five states [110]. Weath-
ers, Swanson & Wolf [336, 337] presented a rate 2/3, (1,7) code that can
be encoded with a 4-state encoder. The encoder was found with the ACH
algorithm. Patel [274] also employed a look-ahead approach for the design
of the Zero-Modulation code (see Chapter 11).

www.manaraa.com

172 CHAPTER 7. SLIDING-BLOCK CODES

Table 7.14: Substituting coding table (1,7) code.

Data Code
00.00 101.000
00.01 100.000
10.00 001.000
10.01 010.000

7.5 Sliding-block algorithm

In this section, we present a description of the sliding-block algorithm by
Adler, Coppersmith & Hassner or ACH algorithm [2, 11]. The algorithm
has been generalized by Marcus [231], Karabed [186] and Ashley & Mar-
cus [15]. An excellent treaty of symbolic dynamics. can be found in [224]
by Lind & Marcus. For further reading see also the tutorial by Marcus, and
Siegel & Wolf [235]. The sliding-block code algorithm guarantees the design
of codes that can be decoded using a sliding-block decoder of finite length.
For a given rate, R = m/n ≤ C, a finite-state machine is derived during
a finite rounds of modifications of the finite-state machine underlying the
channel constraints. Eventually a finite-state machine is produced that has
al least 2m outgoing branches per state. The key idea in the construction
method is that one modifies the finite-state machine describing the con-
strained channel by splitting and merging some of the channel states to
obtain a new finite-state machine. During a state splitting operation new
states are added to the machine, and it is not a prerequisite that the encoder
states are a (sub)set of the channel states as it is, for example, in Franaszek’s
principal state method. The approximate eigenvector v = is used to guide
the splitting process. Each state σi will be split into vi encoder states. Some
states can be merged so that the total number of encoder states is at most
Σivi. The theory of the sliding-block code algorithm is not simple and it
is full of subtlety. A simple example, taken from Siegel [300], may serve to
illustrate the idea. A more detailed description will be given later.

Example 7.2 We construct a rate 2/3, (0,1) code. The connection matrices D
and D3 are

D =

[
1 1
1 0

]
, D3 =

[
3 2
2 1

]
. (7.3)

The finite-state transition diagrams pertaining to D3 is shown in Figure 7.2. An
eigenvector inequality is given by

D3v =

[
3

2

2

1

] [
2

1

]
≥ 22

[
2

1

]
= 22v. (7.4)

www.manaraa.com

7.5. SLIDING-BLOCK ALGORITHM 173

The approximate eigenvector v = (2, 1)T indicates that state σ1 will be split into
two states, while state σ2 will not be split. In this example there will be three
encoder states, because state σ1 will split into two encoder states, while state σ2
will remain unsplit. The two states into which state σ1 is split are denoted by σ11
and σ12 . The outgoing edges of state σ1 are partitioned into two groups which
are assigned to the two ’offspring’ states.

1 2

010

101

111

010

101
110

111

010

Figure 7.2: Finite-state transition diagram of third extension of (0,1)
sequence. After Siegel 1985 [300].

211

2
1

011
110

010

101

111

110

111101

011111

101

111
101

Figure 7.3: Split graph. After Siegel 1985 [300].

Decoding can be accomplished with a 6-bit shift register plus decoding logic,

whose Boolean function is easily discerned from the encoder model, Figure 7.4.

Error propagation is confined to at most four data bits.

All edges which entered state σ1 are redirected to both offspring states
in the split finite-state diagram. The splitting rule requires that the sum
of the weights, where the weight of a state is defined as the value of the

www.manaraa.com

174 CHAPTER 7. SLIDING-BLOCK CODES

corresponding component of v of the terminal states of edges in a group
must be an integer multiple of the approximate eigenvalue, 22, with the
possible exception of one group. We split the edges into groups (011, 110,
010) and (101, 111), both of which have total weight 4. The resultant
diagram is shown in Figure 7.3. It generates the same set of strings as
D3, but has at least four outgoing edges from each state. By discarding
and merging of states we obtain a finite-state machine representation of the
encoder (see Figure 7.4).

211
2

1 ,

10/110

11/010

01/01100/011

00/101

01/111

10/101

11/111

Figure 7.4: Finite-state machine representing a (0,1) code. After Siegel
1985 [300].

7.5.1 Higher-order edge graphs

Before we start with a description of the heart of the ACH algorithm, the
state splitting, it is necessary to introduce a new concept: the higher-order
edge graph. As usual the key of the code design is the state transition
matrixD and its higher powers. The use of the ACH algorithm, as presented
in Adler et al. [2], is often compounded by the fact that it requires an
input matrix with 0/1 elements only. The given transition matrix, usually
a power of D, may not have only 0/1 terms. Higher-order edge graphs, to be
discussed in this section, provide a tool for constructing a source, described
by a zero/one transition matrix, which is equivalent with the original source.
The alternative representation of the original source is formed by making
the allowed transitions, the edges, of the original source, called first order
edge graph, into the states of a new equivalent source, called the second
order edge graph. A new transition matrix is formed by specifying how the
edges of the original source are connected. Likewise, edges of the second
order edge graph play the role of states in the third order edge graph, etc.
The transition matrix of the qth order edge graph is denoted by D[q]. The
output function pertaining to the qth order edge graph, denoted by ζ [q],
is implied by the output function and the structure of the original source.

www.manaraa.com

7.5. SLIDING-BLOCK ALGORITHM 175

Note that the number of states of the (q + 1)th, q ≥ 1, order edge graph
equals the number of edges, that is, the number of elements equal to one of
the qth order edge graph. The procedure is best explained by an example.

Example 7.3 Consider a rate m/n = 2/3, (0,1) code. The transition matrix
D and output vector ζ are

D =

[
1 1
1 0

]
, ζ =

[
1
0

]
. (7.5)

The matrix

D3 =

[
3 2
2 1

]
(7.6)

has terms > 1 so that, in principle, the ACH algorithm cannot be applied. The
formation of higher-order edge graphs will solve this difficulty. The 2-state infor-
mation source defined by (7.5) has three edges (the number of unity elements of
D). The second order edge graph of this source is specified by the 3× 3 matrix
D[2] and the output function ζ[2]

11 12 21
11
12
21

1 1 0
0 0 1
1 1 0

 ζ [2] =

11
12
21

1
0
1

 . (7.7)

The numbers above and to the left of the matrix correspond to the values of i
and j for which dij = 1. A graphical representation of the second order edge
graph is shown in Figure 7.5.

11 12
1

0

1

21

1
0

Figure 7.5: Graphical representation of the second order edge graph for
a (0,1) sequence.

The third power of D[2] is

D[2]3 =

11 12 21
11
12
21

2 2 1
1 1 1
2 2 1

 ,

(7.8)

www.manaraa.com

176 CHAPTER 7. SLIDING-BLOCK CODES

which contains elements > 1, so that it is necessary to continue the process by
forming the third order edge graph. We find

D[3]=

1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
1 1 0 0 0
0 0 1 0 0

, ζ[3] =

1
0
1
1
0

(7.9)

and the third power of D[3]:

D[3]3 =

1 1 1 1 1
1 1 1 0 0
1 1 1 1 1
1 1 1 1 1
1 1 1 0 0

, ζ[3]

3
=

1 1 1
1 1 0
1 0 1
0 1 1
0 1 0

. (7.10)

This matrix is binary valued and can therefore be used as an input for the ACH

algorithm.

We are now in position to describe the kernel of the ACH algorithm: the
state splitting.

7.5.2 State splitting

Consider an N -state unifilar Moore-type Markov information source having
a connection matrix T , tij ∈ {0, 1}, and output vector ζ. The matrix T does
not necessarily describe dk constraints, and some of the above restrictions
can be relaxed, see e.g. [186]). The key idea of the state splitting process is
that such a source can be replaced by a new unifilar (N + p)-state, p ≥ 1,
source with the property that sequences generated by the new source can be
one-to-one transformed into a sequence generated by the old N -state source.
The sequences generated by the two sources are essentially the same even if
they look entirely different. Such a new source can be found with a process
termed state splitting.

Let Ei denote the set of successors of the state σi ∈ Σ, and let {E 1
i

. . . , E α
i }, α = αi ≥ 2, be a disjoint partition of Ei, i.e. Ei = E1

i ∪· · ·∪E α
i . It

is possible to construct a new (N +α−1)-state unifilar Markov information
source by replacing the state σi by α new states, σi1 , . . . , σiα . An edge
that emanates from σi and terminates at σj ∈ Eu

i , u = 1, . . . , α, is replaced
by an edge that emanates from σiu and terminates at σj. Each edge that
terminates in σi will terminate in the α new states unless j = i, that is,
there is a loop at σi. In that case if σi ∈ Eu

i , the loop at σi is replaced
by a loop at σiu and edges from σiu to σiw , w 6= u, respectively. The new
(N + α− 1)× (N + α− 1) connection matrix is denoted by T̂ . The output
of the α offspring states is equal to the output of the parent state, that is,
ζ(σi1) = . . . = ζ(σiα) = ζ(σi).

www.manaraa.com

7.5. SLIDING-BLOCK ALGORITHM 177

Example 7.4 Consider the 4× 4 transition matrix T :

1 2 3 4
1
2
3
4

1 0 1 0
1 1 0 1
1 1 0 0
0 1 0 0

 .

Note, for example, that σ2 has three successors, namely, σ1, σ2, and σ4. In order
to illustrate the process, we split state σ2 into α = 2 offspring states σ21 and σ22 .
If we choose E1

2 = {σ1, σ4} and E2
2 = {σ2}, we obtain the 5× 5 matrix T̂ :

1 21 22 3 4
1
21

22

3
4

1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
1 1 1 0 0
0 1 1 0 0

For convenience we demonstrated the splitting process of only one state.
It is, however, possible to split more than one state per round. The above
process of state splitting can be repeated a number of times. After each
round of state splitting the number of states is increased by Σi (αi − 1) At
first sight, it seems to that we are making matters more complex than they
are. The next paragraph will show the relevance of the state splitting.

Let the capacity of the unifilar source with transition matrix T be lower
bounded by m, m an integer. Then Adler et al. [2] proved that there is an
equivalent source having a connection matrix with row sums ≥ 2m. We give
a brief outline of the algorithm. From the previous section, we know that
there is an approximate eigenvector v, vi ≥ 0, such that

Tv ≥ 2mv. (7.11)

Consider the set Ei of successors of σi. Let E
1
i , . . . , E

α
i be a disjoint parti-

tion of Ei that satisfies the conditions
∑

j ∈Eu
i

vj mod 2m = 0, 1 ≤ u ≤ α− 1,

vi − 2−m
α−1∑

u=1

∑

j ∈Eu
i

vj ≥ 0,
(7.12)

where, for convenience, the state σj is identified with the integer j. Ac-
cording to [2], there exists a partition such that condition (7.12) is satisfied.
Once we have found such a state, say σi, we split σi into α offspring states
σi1 , . . . , σiα . We form a new transition matrix T̂ and a new approximate
eigenvector v̂ with components

(v1, . . . , vi−1, vi1 , . . . , viα , vi+1, . . . , vN).

www.manaraa.com

178 CHAPTER 7. SLIDING-BLOCK CODES

The weights of the α offspring states, vi1 , . . . , viα , are calculated as follows:

viu = 2−m
∑

j ∈Eu
i

vj, 1 ≤ u ≤ α− 1,

viα = vi −
α−1∑

u=1

viu .

(7.13)

It is guaranteed by the splitting rules (7.12) that the weights of the α
offspring states, vi1 , . . . , viα , are non-negative integers. It is now a matter
of substitution to verify that v̂ is an approximate eigenvector of T̂ . It can
be seen that the sum of the state weights of T equals the sum of the state
weights of T̂ . From (7.13) it follows that no offspring state is heavier than
its forebear. Thus, compared with T , either the maximum weight of states
of T̂ , or the number of states with maximum weight, has been reduced. The
splitting process is performed a finite number of rounds with the role of the
new T played by T̂ until a vector v̂ is reached having all its components
equal to zero or one. States having zero weight are removed by crossing
out rows and columns of T̂ corresponding to the weightless states. Then
we have found a finite-state machine having an N̂ × N̂ transition matrix T̂ ,
N̂ ≤ Σivi, that satisfies T̂ v̂ ≥ 2m v̂ and, thus, with row sums at least 2m.
The procedure will be illustrated with an example.

Example 7.5 Consider the ’0/1’ 5×5 transition matrix T , and output function
ζ, which are taken from Example 7.3:

T =

1 1 1 1 1
1 1 1 0 0
1 1 1 1 1
1 1 1 1 1
1 1 1 0 0

, ζ =

1 1 1
1 1 0
1 0 1
0 1 1
0 1 0

.

The maximum real eigenvalue of the matrix T is 22.08, so let m = 2. An approx-
imate eigenvector for the eigenvalue 2m = 4 is vT = (2, 1, 2, 2, 1). It can be
verified that indeed Tv ≥ 4v. The five-state source will be transformed into an
encoder having Σivi = 8 states. State σ1 has weight v1 = 2, and it has five suc-
cessors. There are fifteen proper partitions of the set of successors; three of them
obey (7.12). Quite arbitrarily we choose E1

1 = {σ3, σ4} and E2
1 = {σ1, σ2, σ5}

(it can be verified that conditions (7.12) are satisfied). We split state σ1 into two
offspring states σ11 and σ12 . Applying (7.13), we find that the weights of the two
offspring states are both unity. In similar vein, we split σ3 into σ31 and σ32 with
successors {σ3, σ4} and {σ1, σ2, σ5}, respectively, and σ4 into σ41 and σ42 with
successors {σ3, σ4} and {σ1, σ2, σ5}, respectively. After some bookkeeping, we

www.manaraa.com

7.5. SLIDING-BLOCK ALGORITHM 179

obtain the 8× 8 matrix

T̂ =

11 12 2 31 32 41 42 5
1
2
3
4
5
6
7
8

11

12

2
31

32

41

42

5

0 0 0 1 1 1 1 0
1 1 1 0 0 0 0 1
1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0
1 1 1 0 0 0 0 1
0 0 0 1 1 1 1 0
1 1 1 0 0 0 0 1
1 1 1 1 1 0 0 0

, ζ̂ =

11

12

2
31

32

41

42

5

1 1 1
1 1 1
1 1 0
1 0 1
1 0 1
0 1 1
0 1 1
0 1 0

. (7.14)

The left hand column gives the new state numbers. The new approximate eigen-
vector is v̂T = (1, 1, 1, 1, 1, 1, 1, 1). In this particular example, we reach, after only
one round of splittings, a transition matrix with the virtue that each state has at
least 2m = 4 branches. The number of successors of states σ3 and σ8 exceeds the
four required branches per state. They both have five branches. It is therefore
legitimate to delete one of the successors of states σ3 and σ8. In principle, the
deletions can be made arbitrarily, but sometimes it is more convenient to delete
branches such that rows are similar, because states can be merged afterwards.
After these operations, we obtain a final T̄ whose row sums equal 2m. Thus we
have

T̄ =

0 0 0 1 1 1 1 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 0
1 1 1 0 0 0 0 1
0 0 0 1 1 1 1 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0

It is interesting to reflect upon the fact that before deleting the branches, the

transition matrix T̂ given by (7.14) still has the maximum real eigenvalue, 22.08,

of the original transition matrix. After deleting the excess branches, we obtain

T̄ whose (maximal) eigenvalue is exactly 2m = 4.

The ACH algorithm can be summarized as follows:

1. Write down the connection matrix D and determine the capacity
C(d, k) of the constrained channel. Choose integers m and n such
that C ≥ m/n.

2. Compute Dn.

3. Verify if [D]nij ∈ {0, 1}. If so, then T = Dn else find a qth order

edge graph D[q] for which D[q]n has zero/one elements only. Then set
T = D[q]n .

4. Compute an approximate eigenvector v for T .

www.manaraa.com

180 CHAPTER 7. SLIDING-BLOCK CODES

5. Use T and v as inputs for the state splitting procedure. Repeat the
state splitting procedure until an eigenvector v̂ is reached having all
components equal to zero or one.

6. Delete the excess successor states, and states for which vi = 0. Merge
states for encoder simplicity.

7. Assign source words to the branches.

Table 7.15: Transition table g(σi,βu) of rate 2/3, (0,1) code.

βu 00 01 10 11
σi

1 4 5 6 7
2 1 2 3 8
3 1 2 3 4
4 4 5 6 7
5 1 2 3 8
6 4 5 6 7
7 1 2 3 8
8 1 2 3 4

After the previous spadework, it is now a simple matter to assemble a rate
2/3, (0,1) encoder. In fact, we already started: Steps 1, . . . , 4 of the ACH
algorithm were taken in Example 7.3, followed by Steps 4, 5, and 6 in
Example 7.5. The last step, Step 7, ”Assign source words to the branches”
remains to be done.

Table 7.16: Output table χi = h(σi) of rate 2/3, (0,1) code.

σi χi = h(σi)
1 111
2 111
3 110
4 101
5 101
6 011
7 011
8 010

www.manaraa.com

7.6. BALDWIN CODES 181

A Moore-type encoder is defined by its characterizing functions g(., .)
and h(., .) (see Chapter 2). The next-state function g(σi, βu), where βu,
u = 1, . . . , 4, are the four source words, and the output function h(σi) are
shown in Tables 7.15 and 7.16. The assignment of the source words to the
branches has been made rather arbitrarily. The encoder comprises a 3-stage
register to store the actual state, and a (2 + 3) → (3 + 3) logic array for
looking-up the 3-bit codeword and the 3-bit next-state. Other embodiments
are, of course, possible. The relationship between the window length of
the sliding-block decoder and the various code parameters is still an open
problem. For example, for the rate 2/3, (0,1) code discussed above, we find
r = q = 1. A more judicious choice of the partitioning of the successor
states as described in Example 7.5 would provide a slight improvement in
the decoder window length.

7.6 Baldwin codes

Baldwin [22] published an interesting family of rate 1/2, (d = 2,∞) codes.
The Baldwin codes could be found by invoking the ACH method, but it
is much easier to explain it differently. The crux of the Baldwin’s code is
simple.

7.6.1 Encoder description

All words used in the construction are d = 2 constrained. The encoder has
two states, called State 1 and 2. The set of codewords in State 1, S1, consists
of two subsets, denoted by S1a and S1b. Similarly the set of codewords in
State 2, S2, consists of two subsets, denoted by S2a and S2b. The codewords
in the four subsets are characterized as follows.

Table 7.17: Principle of operation of Baldwin’s code. An ’x’ denotes a
don’t care.”

State 1 next state State 2 next state
00 . . . xx 1 10 . . . xx 1
00 . . . 00 2 01 . . . xx 1

10 . . . 00 2
01 . . . 00 2

Codewords in subset S1a start with two ’zero’s. After transmission of
a codeword in S1a the encoder remains in State 1. Codewords in S1b start
and end with two ’zero’s. Note that subsets S1a and S1b have the words

www.manaraa.com

182 CHAPTER 7. SLIDING-BLOCK CODES

that end with two ’zero’s in common. After transmission of a codeword in
S1b the encoder will go to State 2. Codewords in subset S2a have a ’one’
at one of the two leading bit positions. After transmission of a codeword
in S2a the encoder will go to State 1. Codewords in subset S2b have a ’one’
at one of the two leading bit positions and they end with 2 ’zero’s. After
transmission of a codeword in S2a the encoder will remain in State 2. An
overview of the various subsets and their properties is given in Table 7.17.
The number of available codewords in State 1 is Nd=2(n− 2)+Nd=2(n− 4),
which using (4.2) equals Nd=2(n− 1). The total number of words available
in State 2 is Nd=2(n − 2) + Nd=2(n − 3). As Nd=2(n − 4) < Nd=2(n − 3),
we conclude that the number of words pertaining to State 1 is the smallest,
and therefore the size of the code is Nd=2(n− 1). It is easily seen that the
sets of words pertaining to State 1 and State 2 are disjoint (they start with
d = 2 ’zero’s or they do not).

The ambiguity of the words that subsets S1a and S1b (or S2a and S2b)
have in common can be resolved by observing the two leading bits of the next
codeword. This will lead to a very slight error propagation. As an example
we worked the Baldwin code for n = 8. The number of codewords leaving
State 1 and State 2 equal 9 and 10 (see Table 4.2, page 55), respectively.
After deleting the surplus codewords, we obtained the two-state (2,∞) code
listed in Table 7.18.

Table 7.18: Codebook of two-state (2,∞) code.

i h, g(1,βi) h, g(2,βi)
0 000000, 1 010000, 1
1 000001, 1 010001, 1
2 000010, 1 010010, 1
3 000100, 1 100100, 1
4 001000, 1 100001, 1
5 001001, 1 100010, 1
6 000000, 2 100000, 1
7 000100, 2 100100, 2

As suggested by Baldwin, his code can be embellished in various ways.
The employment of dklr sequences, where r = b(k−2)/2c and l = k−2−r,
in lieu of d sequences leads to a straight forward construction of a (d, k),
k < ∞ code. If there are some words left (i.e. more than the required
power of two) we can use them, as claimed in Baldwin’s patent, as alter-
native channel representations for reducing the low-frequency components.
For example, for n = 16, Baldwin showed that the two coding tables of
State 1 and 2, respectively, are of size 406 and 466, respectively. This leaves

www.manaraa.com

7.7. IMMINK CODES 183

ample spare codewords for the implementation of a rate 8/16, (2,11) dc-free
code. EFMPlus, a rate 8/16, (2,10) code, to be discussed in Section 11.5.2,
uses four instead of two coding tables, and the same mechanism for reducing
the lf components.

7.7 Immink codes

In the next sections we will discuss the construction of simple d = 1 and
d = 2 RLL encoders.

7.7.1 Encoder description, d=1 case

In this section, we will describe a finite-state encoder that generates se-
quences satisfying the d = 1 constraint (the k constraint is ignored for a
while for ease of presentation). We start with a few ubiquitous definitions.
A codeword is a binary string of length n that satisfies the d = 1 constraint.
The set of codewords, E, is divided into four subsets E00, E01, E10, and E11.
The four subsets are characterized as follows.

......0

......1

First type of states

Second type of states

r1

r2

Figure 7.6: Codewords that end with a ’0’ may be followed by codewords
in the r1 states of the first type and the r2 states of the second type, while
words that end with a ’1’ may only be followed by codewords in the r1
states of the first type.

Codewords in E00 start and end with a ’0’, codewords in E01 start with
a ’0’ and end with a ’1’, etc. The encoder has r states, which are divided
into two state subsets of a first and second type. The encoder has r1 states

www.manaraa.com

184 CHAPTER 7. SLIDING-BLOCK CODES

of the first type and r2(= r−r1) states of the second type. The two types of
coding states are characterized by the fact that codewords in the states of
the first type must start with a ’0’, while codewords in states of the second
type are free to start with a ’1’ or a ’0’. The encoder state-transition rules
are now easily described. Codewords that end with a ’0’, i.e., codewords in
subsets E00 and E10 may enter any of the r encoder states. Codewords that
end with a ’1’ may be followed by codewords in the r1 states of the first type
only (as, by definition, the codewords in states of the first type start with
a ’0’). The encoder concept is schematically represented in Figure 7.6. It is
essential that the sets of codewords in a given state (of any type) do not have
codewords in common (i.e. sets of codewords associated with coding states
are disjoint). This property implies that any codeword can unambiguously
be identified to the state from which it emerged. Then, as we will show, it
is possible to assign the same codeword to different information words (the
miraculous multiplication of codewords). Codewords in subsets E10 and E00

can be assigned r times to different information words, while codewords in
subsets E11 and E01 can be assigned r1 times to different information words.
The decoder can, by observing both the current and the next codeword for
identifying the next state, uniquely decide which of the information words
was transmitted. Given the above encoder model, we can write down two
existential conditions of a rate m/n, d = 1 code. Let |Exy| denote the
size of Exy. Then, following the above arguments,there are at maximum
r|E00|+ r1|E01| codewords leaving the r1 states of the first type. For a rate
m/n code, there should be at least r12

m codewords leaving the r1 states of
the first type. Thus we can write down the first condition

r|E00|+ r1|E01| ≥ r12
m. (7.15)

Similarly, the second condition follows from the fact that there should be a
sufficient amount of codewords leaving the r states. We find

r(|E00|+ |E10|) + r1(|E01|+ |E11|) ≥ r2m. (7.16)

Note that the above inequalities are reminiscent of the approximate eigen-
vector equation, see (7.1), page 170, which plays an essential role in a vari-
ety of code constructions. There is quite a difference as the two inequalities
above imply a specific encoder structure at hand, while the approximate
eigenvector equation is merely a guide for building a code.

With a small computer we can, given m and n, easily find integers r and
r1 that satisfy the above two conditions. An example of a very small rate
2/3, (1,∞) code will exemplify the above.

Example 7.6 Let m = 2 and n = 3. Then E00 ={000, 010}, E01 = {001},
E10 = {100}, and E11 = {101}. The choice of r1 = r2 = 1 satisfies Conditions
(7.15) and (7.16), and we can simply write down the encoding table 7.19.

www.manaraa.com

7.7. IMMINK CODES 185

Table 7.19: Codebook of two-state rate 2/3, (1,∞) code.

i h, g(1,βi) h, g(2,βi)

0 000, 1 100, 1
1 000, 2 100, 2
2 010, 1 001, 1
3 010, 2 101, 1

With the above simple case in mind, we can easily generalize the above two-state

encoder to larger values of n. Assume that all codewords in State 1 start with

a ’zero’, while codewords in State 2 may start with a ’one’ or a ’zero’. Then

codewords ending with a ’one’ are directed to State 2, and codewords ending

with a ’zero’ are directed to State 1 and State 2. As a result, a two-state (d = 1)

encoder has a maximum of 2N1(n − 1) + N1(n − 2) = N1(n + 1), n > d + 1,

codewords, where N1(n) denotes the number of (d = 1) sequences of length n.

The number of source words that can be accommodated is bN1(n + 1)/2c. For

n = 6, we have a total of 34 suitable codewords, and by deleting the two all-zero

codewords, we may construct a 2-state rate 4/6, (1,10) code.

In the next example, we will show the details of the construction of a rate
9/13, d = 2 code.

Example 7.7 Assume the construction of a rate 9/13 encoder. Then |E00| =
233, |E10| = |E01| = 144, and |E11| = 89. Table 7.20 shows values of r1, r2, and
r = r1 + r2 that satisfy Conditions (7.15) and (7.16).

Table 7.20: Values of r1 and r2 that satisfy Conditions (7.15) and (7.16).

r1 r2 r = r1 + r2
3 2 5
5 3 8
6 4 10
7 5 12
8 5 13

After finding suitable values of r1 and r2, the next step in the code construction
is the distribution of the various codewords among the various states. In order
to find such a distribution, a trial and error approach has been used. Table 7.21
shows, for r1 = 3 and r2 = 2 as an example (Note that the distribution given
is not unique, there are many other ways for allocating the codewords to the
states), how the codewords in the various subsets can be allocated to the various
states.

www.manaraa.com

186 CHAPTER 7. SLIDING-BLOCK CODES

From Table 7.21, we discern that the subset E00 of size 233 has 72 words
in States 1 and 2, 87 words in State 3, and 2 words in State 5. Thus in total:
72+72+87+2=233. Similarly, it can be verified that the four row sums equal
the number of codewords in each of the four subsets. Codewords that end with
a ’0’, i.e., codewords in E10 and E00, can be assigned r = 5 times to different
information words, while codewords that end with a ’1’, i.e. codeword in E11

and E01, can be assigned r1 = 3 times to different information words. Thus,
the total number of information words that can be assigned to the codewords in
State 1 is 5× 72+3× 52 = 516. Similarly, it can be verified that from any of the
r = 5 encoder states there at least 516 information words that can be assigned
to codewords, which shows that the code can accommodate 9-bit information
words. An enumeration table such as Table 7.21 suffices to construct a code by
assigning codewords to the coding states and source words.

Table 7.21: Distribution of the various subsets and states.

group/state 1 2 3 4 5

E00 72 72 87 0 2
E01 52 52 27 0 13
E10 0 0 0 72 72
E11 0 0 0 52 37

It can be verified with the procedure outlined above that a 13-state encoder of
(code) size 520 can be created. The maximum size of any 13-bit (1,∞) code
equals b213C(1,∞)c = 521, and we therefore conclude that the above code is quite
efficient (η = 0.9996) particularly considering that the encoder has a relatively
small number, 13, of states. This code is supposedly one of the most efficient in
existence in terms of relative performance. Such extremely efficient codes could
up till now only be constructed with ”large” codewords, but as shown here also
selected ”small” codes can have a rate which is very close to the channel capacity.

As the above code can accommodate more than the required 512 words, sur-

plus ’worst-case’ codewords can be deleted for minimizing the k constraint. After

a judicious process of deleting codewords that end or start with ”long” runs of

’0’s, we constructed a 5-state (1,18) code, and a 13-state (1,14) code. Note in

Table 4.4, page 60, that the smallest possible k for a rate 9/13 code equals 12.

The code can be decoded by a sliding block decoder, see Section 7.2, of
window size two. Single channel bit errors can thus lead to at most two
decoded m-bit symbols. The decoder comprises two look-up tables: the
next-state look-up table and the data look-up table. The next-state look-
up table has the next codeword as an input, and the state to which this
word belongs as an output. The data look-up table has the output of the
next-state look-up table and the current codeword as an input, and the
output of the data look-up table is the decoded information word.

www.manaraa.com

7.7. IMMINK CODES 187

7.7.2 Encoder description, d=2 case

In this section we will describe a finite-state encoder that generates se-
quences that satisfy the d = 2 constraint (note that the k constraint will
be ignored for a while). We start with a few definitions. The encoder is
assumed to have r states, which are divided into three state subsets of states
of a first, second, and third type. The state subsets are of size r1, r2, and
r3(= r − r1 − r2), respectively. A codeword is a binary string of length n
that satisfies the d = 2 constraint. The set of codewords is divided into nine
subsets denoted by E0000, E0001, E0010, E0011, E0100 etc, where the two first
symbols of the subset subscript denote the first two symbols of the code-
word, and the last two symbols of the subset subscript denote the last two
symbols of the codeword. Thus, codewords in E0000 start and end with ’00’;
codewords in E0001 start with ’00’ and end with a ’01’, etc. The codewords
in the various subsets are distributed over the various states of the three
types such that

• codewords in states of the first type start with ’00’,

• codewords in states of the second type start with ’01’ or ’00’, and

• codewords in states of the third type start with ’10, ’01’ or ’00’.

The state-transition rules are now easily described. Codewords that end
with the string ’00’, i.e., codewords in subsets E0000, E0100, and E1000 may
enter any of the r encoder states. Codewords that end with a ’10’ may not
be followed by codewords in a state of the third type. Similarly, codewords
that end with a ’1’ may only be followed by codewords belonging to states
of the first type. The state sets of codewords from which a selection is to be
made do not have codewords in common. As a result, it is possible to assign
the same codeword to different information words. For example, codewords
that end with ’00’, i.e. codewords in subsets E0000, E0100, and E1000, may
enter any state so that these codewords can be assigned r = r1 + r2 + r3
times to different information words. Codewords that end with ’10’, i.e.
words in subsets E0010, E0110, and E1010 may enter states of the 1st and 2nd
type so that these codewords can be assigned (r1 + r2) times to different
information words. Similarly, codewords that end with a ’1’, i.e. words in
the remaining subsets E0001, E0101, and E1001 can be assigned r1 times. Note
that the Baldwin code, see Section 7.6, can be seen as a special case where
r2 = 0. Given the above encoder model, it is straightforward to write down
three conditions for the existence of such a rate m/n code.

r|E0000|+ (r1 + r2)|E0010|+ r1|E0001| ≥ r12
m, (7.17)

r|E0100|+ (r1 + r2)|E0110|+ r1|E0101| ≥ r22
m, (7.18)

www.manaraa.com

188 CHAPTER 7. SLIDING-BLOCK CODES

r|E1000|+ (r1 + r2)|E1010|+ r1|E1001| ≥ r32
m. (7.19)

In a similar vein as with the (d = 1) codes discussed previously, we have ex-
perimented with the selection of suitable values ofm, n, r1, r2, and r3. Many
good codes have been found. As a typical example, which is amenable for
a hand check, we will show results of a 9-state, (2, k) code of rate 6/11.

Table 7.22: Example of the distribution of the various subsets and states
of a rate 6/11, (2, k) code.

group/state 1 2 3 4 5 6 7 8 9
E0000 6 4 4 4
E0010 1 2 2 4
E0001 1 4 4 1 1
E1000 4 4 5
E1010 2 2 2
E1001 4 4 1
E0100 4 5
E0110 2 2
E0101 4 2

Given the choice of the code rate, we use a small computer program to find
suitable values of r1, r2, and r3 that satisfy conditions (7.17), (7.18), and
(7.19). A possible distribution of the various codeword sets, where we opted
for r1 = 4, r2 = 2, and r3 = 3, is shown in Table 7.22. Such a distribution
table suffices to construct the code.

Table 7.23: Code size, M , for d = 2, n = 16, and selected values of the
number of encoder states r.

r1 r2 r3 r M η = R/C(2,∞)
1 1 1 3 426 0.98995
2 1 2 5 430 0.99148
3 1 3 7 431 0.99186
4 2 3 9 447 0.99782
7 3 5 15 450 0.99891
13 6 9 28 452 0.99963

After judiciously barring worst-case codewords from the coding table,
it is possible to construct a rate 6/11, (2,15) code. Note, see Table 4.4,
page 4.4, that k = 11 is the smallest value possible for the given rate 6/11.

www.manaraa.com

7.7. IMMINK CODES 189

Using the above method, it is possible to construct a 9-state rate 11/20,
(2,23) code, whose efficiency is 0.25% less than capacity. In addition, a rate
7/13, (2,11) code was constructed, whose efficiency is 1.1% less than capac-
ity. The efficiency of the new construction technique can be exemplified by
an example, where the code size, M , does not equal a power of two. The
spare codewords can obviously be used as an alternative channel represen-
tation for suppressing the lf components. Table 7.23 shows the efficiency
η = R/C(2,∞) as a function of the number of encoder states r. It shows
that the construction technique is extremely efficient reaching efficiencies
that are only a tenth of a percent below capacity. Note that the maximum
size of a code with codewords of length n = 16 equals 453.

7.7.3 Very efficient coding schemes

Many good RLL codes have been published, but information recording has
a constant need for enhancing the information density on the record carrier,
and a possible solution to this end is an increase of the rate of the code.
As shown in Chapter 4, the tenets of information theory set a limit to the
maximum rate of RLL constrained codes. Table 4.4, page 60, tabulates
C(d, k) as a function of d and k. We may observe, for example, that for
d = 1 and k = 7 the Shannon capacity, C(1, 7), has a value of 0.6793. As a
consequence, an encoder that translates arbitrary sequences into sequences
that have at least d = 1 and at most k = 7 0’s between successive 1’s,
cannot have a rate larger than 0.6793. Rate 2/3, (1,7) codes have been used
in recording systems for more than a quarter of a century, see for exam-
ple this chapter. Recently, embellishments of this classic code have been
published, which turn the RLL code into a DCRLL code [181, 257]. Al-
ternatively, Hassner et al. presented rate 2/3, (1,9) and (1,13) RLL codes
in which predetermined RLL-coded sequences are inhibited from indefinite
recurrence by imposing an additional maximum transition run (MTR) con-
straint [123]. For ease of presentation we will first focus on the design of
RLL codes with d = 1. Later we will extend the ideas to the design of codes
with d = 2. The code rate, 2/3, of the (1,7) code is slightly less than the
Shannon capacity, 0.6793, and the code is therefore an efficient one. The
rate efficiency η = R/C(d, k) of the rate 2/3, (1,7) code is 0.6667/0.6793 =
0.981, which reveals that we can at most gain 1.9% in rate by an alternative,
more efficient, code redesign. There are only two approaches for construct-
ing a (1, k) RLL code, whose rate is larger than two-thirds. Firstly, we may
relax the maximum runlength k to a value larger than 7. Note that a (1,7)
code was first put to practical use in the early seventies, and that since the
advent of hard-disk drives (HDDs), significant improvements in signal pro-
cessing for timing recovery circuits have made it possible to employ codes
with a much larger maximum runlength k. Secondly, on top of that, we

www.manaraa.com

190 CHAPTER 7. SLIDING-BLOCK CODES

may endeavor to design a more efficient code. Note that by fully relaxing
the k constraint, i.e. set k = ∞, we can at most gain 3.97% in code rate. In
other words, a viable improvement in code rate of a (d = 1) encoder ranges
from 1.9 to 3.97%.

In the sequel of this section, we will show how to create a (1,14) code,
whose rate is 3.85% better than the traditional rate 2/3, (1,7) code. We
start, in the next subsection, with a simple problem, namely finding integers
m and n that improve the rate, 2/3, of the industry standard code.

Suitable integers m and n for d = 1

We will start with a simple, but very illuminating exercise, namely a search
for pairs of integers m and n that are suitable candidates for a coding rate
exceeding 2/3. Obviously, the ”best” code is a code with a rate, m/n, that
exactly equals the capacity C(d, k) for desired values of d and k. One is
tempted to ask if it is possible to choose m and n such that m/n = C(d, k).
The answer, a sounding no, was given by Ashley & Siegel, see Theorem 4.1,
page 62, who showed that, besides a very few trivial exceptions, the capacity,
C(d, k), is an irrational number. As the rate of a code m/n, m and n
integers, is rational, the capacity can only be approached.

Table 7.24: Integers m and n such that 2/3 < R = m/n < C(1,∞). The
quantity η = R/C(1,∞) expresses the code efficiency.

m n 1− η %
34 49 0.0525
9 13 0.2786
11 16 0.9711
13 19 1.4449
15 22 1.7895
17 25 2.0514

In order to obtain some feeling if there are many ”practical” pairs of such
integers m and n, we wrote a one-line computer program for searching
integers m and n that satisfy the inequalities 2/3 < m/n < C(1,∞), where
for reasons of implementation we set n < 50. All pairs of integers found are
shown in Table 7.24. Surprisingly there are just six m and n pairs whose
quotient is larger than 2/3. Perusal of the table reveals that the code rate
m/n = 9/13 is highly attractive as it is just 0.28% below the Shannon
capacity C(1,∞). The next better code of rate 34/49 is far less attractive
as it is much more complex and adds a minute 0.2% to the density gain
with respect to a rate 9/13 code.

www.manaraa.com

7.8. DISCUSSION 191

Suitable integers m and n for d = 2

RLL codes with minimum runlength parameter d = 2 have been widely
published. Table 4.4 tabulates C(2, k) as a function of k, and from this
table the reader can easily discern the head room available for the design
of a code of rate R = m/n > 8/15. The rate 8/15 is, see Table 4.4, 3.3%
below channel capacity C(2,∞). Table 7.25 shows selected values of m and
n, where 8/15 ≤ m/n < C(2,∞) and n < 50. The pairs of integers are
ranked by their corresponding efficiency R/C(2,∞).

Table 7.25: Integers m and n such that 8/15 < R = m/n < C(2,∞).
The quantity η = R/C(2,∞) expresses the code efficiency.

m n 1− η %
11 20 0.2720
17 31 0.5644
6 11 1.0962
19 35 1.5672
13 24 1.7830
20 37 1.9872
7 13 2.3642
15 28 2.8623
8 15 3.2940

Clearly, the quotients 11/20, 6/11, and 7/13 are suitable candidate rates
for the creation of small (d = 2) codes. Efficiency-wise speaking the code
of rate 17/31 looks more attractive, but the code is far too complex for an
implementation using state of the art technology. Table 7.26 summarizes
d = 1 and d = 2 (d, k) codes, which have been found with the methods
presented above [164]. Note that the efficiency of the majority of the new
codes is just a few tenths of a percent below capacity. Kim [204] has been
granted a U.S. Patent on an alternative embodiment of a rate 7/13, (2,25)
code, which is based on the 3PM method, see Section 5.8.1, page 127.

7.8 Discussion

Many other examples of sliding-block codes have been published in the
(patent) literature. Four low-rate recording codes have been presented by
Adler et al. [4], and Van Rensburg & Ferreira [289]. A rate 2/5, (3,11) code
was published by Lee [219]. In [3], a rate 2/3, (1,7) code is disclosed by
Adler et al., which is similar to the look-ahead code designed by Jacoby
& Kost [174]. Examples of rate 1/2, (2,10) codes have been presented by

www.manaraa.com

192 CHAPTER 7. SLIDING-BLOCK CODES

French & Wolf [103]. A code designed by Adler [5] with properties rate 2/3,
(1,6) code, has the virtue that one error in the encoded string can result in
no more than eleven errors in the decoded data.

Table 7.26: Survey of newly developed codes. (Taken from [164].)

m n d k states η = R/C(d, k)
11 20 2 23 9 0.9975
7 13 2 11 9 0.9880
6 11 2 15 9 0.9915
9 13 1 14 13 0.9979
9 13 1 18 5 0.9973
11 16 1 10 13 0.9951

Hollmann [139], Chapter 4, presented a code with the same parameters,
but the window is shorter, namely five 3-bit codewords, and error propa-
gation of nine data bits only. A blind application of the ACH algorithm
will not provide a decoder with the shortest decoder window length. In-
deed, every step of the ACH algorithm may affect the complexity of the
encoder and decoder. The initial choice of the approximate eigenvector, the
state splitting procedure, which excess successor states are to be deleted,
and the eventual assignment of source words to branches are crucial as all
these steps of the algorithm govern to some extent the final complexity
and the decoder window length. It should be underlined that there are no
systematic algorithms available to find an encoder/decoder pair of minimal
hardware, or to find an encoder algorithm with a corresponding decoder of
the shortest decoder window length. Complexity issues have been inves-
tigated by many workers. For example, the minimum number of encoder
states has been dealt with by Marcus & Roth [234], and the minimum
sliding-block window has been studied by Ashley, Marcus, and Roth [9,
14, 16] and Hollmann [139]. Ruckenstein & Roth studied the anticipation
of encoders for input-constrained channels [293]. Algorithms for searching
the sliding-block decoder mapping of minimum window length were pub-
lished by Kamabe [183]. Variable-length state splitting was introduced by
Heegard, Marcus & Siegel [129].

As can be seen from the many examples given in the last part of this
chapter, numerous construction techniques have been developed over the
last forty years. A priori, it is hard to say which of these techniques is
’best’.

Variable-length codes, look-ahead codes, or codes designed by the state-
splitting (ACH) algorithm can, as we have demonstrated, yield dramatic
reduction in complexity of the encoder and decoder for codes of certain rates

www.manaraa.com

7.8. DISCUSSION 193

as compared with their block code counterparts. The approaches mentioned
lead to codes of approximately the same complexity. The exact relationship
between the methods is still an open problem [87]. The relationship between
codes designed by the ACH versus bounded-delay codes was investigated by
Hollmann [137, 139, 138]. The design procedures can be made completely
systematic, in the sense that computer programs can (and probably have
been) written to automatically generate coding and decoding tables. The
eventual design may benefit from some interaction with a human operator
who can steer the algorithm.

As we have demonstrated, notably codes with rate 1/2 or 2/3 can be
designed very efficiently with the ACH (and other) algorithm, and it is
scarcely conceivable that one could improve their performance and/or hard-
ware requirements. If, however, the code rate is of the form m/n, m and
n large, fixed-length block codes using, for example, (dklr) sequences may
offer a more advantageous solution since it is easier to preserve a partic-
ular mapping between the source and the code symbols. Look-up tables
or alternatively enumerative coding, see Chapter 6, are attractive methods
for translating the words. The quest for higher code efficiencies has given
impetus to alternative constructions, such as block codes having very long
codewords, which approach channel capacity within 0.5% for a block length
of 400 to 500 bits (see Chapter 6). In some instances a comprehensive word
assignment can be discovered that allows the use of Boolean equations for
encoding and decoding, as in the case of EFM (Section 5.6.1, page 114), the
rate 8/9, (0,3) block code (Section 5.6.2, page 114), or other k-constrained
codes (Section 5.6.3, page 115). An additional advantage of fixed-length
block codes is the convenience with which they can be incorporated into a
fixed-frame format having synchronization patterns at regular distances.

www.manaraa.com

194 CHAPTER 7. SLIDING-BLOCK CODES

www.manaraa.com

Chapter 8

Dc-balanced Codes

8.1 Introduction

Binary sequences with spectral nulls at zero frequency have found wide-
spread application in optical and magnetic recording systems. Dc-balanced,
dc-free, or spectral null codes, as they are often called, have a long history
and their application is certainly not confined to recording practice. In dig-
ital transmission, it is sometimes desirable for the channel stream to have
low power near the zero frequency. Since the early days of digital commu-
nication over cable, dc-balanced codes have been employed to counter the
effects of low-frequency cut-off due to coupling components, isolating trans-
formers, and so on. In optical recording, dc-balanced codes are employed to
circumvent or reduce interaction between the data written on the disc and
the servo systems that follow the track. Low-frequency disturbances, for ex-
ample due to fingerprints, may result in erroneous retrieval of the recorded
data. Errors of this type are avoided by high-pass filtering, which is only
permissible provided the encoded sequence itself contains no low-frequency
components, or, in other words, has a spectral null at the zero frequency
(dc). Many of the most important block codes for spectral shaping pur-
poses fall into the category of dc-balanced codes. Codes with spectral nulls
at other frequencies than zero are often used in recorder systems for tracking
and pilot tone insertion [148, 233].

Practical coding schemes devised to achieve suppression of low-frequency
components are mostly constituted by block codes. More advanced coding
techniques, such as look-ahead encoding, or bounded-delay encoding, as dis-
cussed in previous chapters, have not been used for generating dc-balanced
sequences. The reason is, probably, that dc-balanced codes usually have
a small redundancy. A code rate of, say, 24/25 or higher, is a desirable
objective, and the design challenge of such high-rate codes is focused on the
complexity of the encoding and decoding tables.

As standard practice, the source digits are grouped in source words of m

195

www.manaraa.com

196 CHAPTER 8. DC-BALANCED CODES

digits, which are translated, using a conversion table, known as codebook,
into blocks of n digits. The approaches which have actually been used in
practice for dc-balanced code design are basically four in number:

Zero-disparity code,
Low-disparity code,
Polarity bit code,
Guided scrambling.

The disparity of a codeword is defined as the excess of the number of ’one’s
over the number of ’zero’s in the codeword. Thus the codewords ’000110’
and ’100111’ have disparity -2 and +2, respectively. A zero-disparity code-
word contains equal numbers of ’one’s and ’zero’s. The obvious method for
constructing dc-balanced codes is to employ zero-disparity codewords that
have a one-to-one correspondence with the source words, and therefore the
code is state independent.

A logical step, then, is to extend this mechanism to family of the low-
disparity bi-mode codes, where the translations are not one-to-one. The
zero-disparity codewords are uniquely allocated to the source words as in
the zero-disparity code. The other, non-zero-disparity, codewords are allo-
cated in pairs of opposite disparity. Each of the two representations, modes,
is interpreted by the decoder in the same way. During transmission, the
choice of a specific translation is made in such a way that the accumulated
disparity, or the running digital sum, of the encoded sequence, after trans-
mission of the new non-zero-disparity codeword, is as close to zero as pos-
sible. The running digital sum (RDS) is defined for a binary stream as the
accumulated sum of ’one’s and ’zero’s (a ’zero’ counted as -1) counted from
the start of the transmission. Both of the basic approaches to dc-balanced
coding are due to Cattermole [52, 53] and Griffiths [117, 118].

The third coding method was devised by Bowers [42] and Carter [50,
51] who proposed a slightly different construction of dc-balanced codes as
being attractive because no look-up tables are required for encoding and
decoding. They proposed a code where (n− 1) (binary) source symbols are
supplemented by one symbol called the polarity bit. The encoder has the
option to transmit the n-bit codewords without modification or the encoder
may invert all, n, symbols. Again, like in the low-disparity code, the choice
of a specific translation is made in such a way that the accumulated disparity
is as close to zero as possible. The polarity bit is used by the decoder to
identify whether the transmitted codeword has been inverted or not.

The study of the fourth method, guided scrambling, was given new im-
petus by the work of Fair et al. [76, 77]. Guided scrambling is a member of
a larger class of related coding schemes, called multi-mode code, where each
source word can be represented by a member of a (usually very large) se-

www.manaraa.com

8.1. INTRODUCTION 197

lection set of codewords. The encoder opts for transmitting that codeword
that minimizes, according to a criterion to be defined, the low-frequency
spectral contents of the encoded sequence. Two key ingredients, namely
the mapping between source words and codewords plus the selection of the
”best” word, require special attention. The spectral (or other) performance
of the code greatly depends on both issues. A detailed presentation of
guided scrambling will be given in a separate chapter, namely Chapter 10.

The outline of this chapter is as follows. In Section 8.2, we will study the
relationship between the capacity, notch width, and digital sum variation of
maxentropic dc-balanced sequences. In order to get some insight into the
efficiency of the aforementioned construction techniques, we shall evaluate
the spectral properties of their respective code streams. The theory provided
in Chapter 3 furnishes efficient procedures for the computation of the power
spectral density function of block-coded signals produced by an encoder that
can be modelled by a finite-state machine. Thus the prospect of numerical
analysis need not be depressing. The difficulty is rather that we prefer to
know the dependence of the code’s performance upon the various design
parameters and such dependencies are hard to assess by numerical analysis.
Fortunately, the structure of the above simple dc-balanced codes allows us to
derive simple expressions for the rate and power spectral density functions.
In Section 8.4, the power density function of low-disparity-based channel
codes is established. The variance of the running digital sum (in short,
sum variance) is, as we will see shortly, a useful concept in evaluating the
spectral range of suppressed components. The sum variance of selected
channel codes is calculated in Section 8.4.

The theoretical development in Section 8.2 demonstrates that there is
a relationship between the performance of the code expressed in the notch
width and the redundancy of the code. Coding efficiency and ease of imple-
mentation are to a large extent incompatible and we are, for the moment,
solely concerned with their mathematical properties. One question of signif-
icance is that of code efficiency expressed in terms of spectral notch width
and redundancy. The performance of maxentropic dc-balanced sequences,
whose properties are studied in Section 8.2, sets a standard by which the
performance of dc-balanced code implementations may be measured. In
Section 8.6.1, invoking the theory developed in Section 8.2, we intend to
appraise the performance of the implemented channel codes. Engineering
examples of rate 8/10, 8B10B codes are discussed in Section 8.7.

The design of dc-free codes, where the codeword length is even, is simpler
than one where the codewords are of odd length. In Section 8.8, we will
outline the challenging task of designing dc-free codes with odd codeword
length. A redefinition of the running digital sum will make it possible to
efficiently design such codes. Thereafter, in Section 8.9, we will present a
simple method for encoding zero-disparity codewords. The codeword can be

www.manaraa.com

198 CHAPTER 8. DC-BALANCED CODES

obtained by inverting only one symbol in the source word. The information
regarding the position, where the symbol has been inverted, is transmitted
as a zero-disparity prefix. This method, which is capable of handling (very)
large blocks was described by Knuth [206]. A patent was granted in 1982
to Henry describing a similar method [131].

8.2 Preliminaries

Common sense tells us that a certain rate has to be sacrificed in order to
convert arbitrary data into a dc-balanced sequence. The first question to be
addressed in this chapter is the quantification of the maximum rate, that
is capacity, of a sequence given the fact that it contains no low-frequency
components. The mathematical tools that will be used to compute the
capacity of the dc-balanced channel are derived in a straightforward fashion
from the theory developed in Chapter 2. Early work on this topic has been
reported by Chien [59] and Justesen & Hoholdt [177, 179]. A description
will be provided of statistical characteristics of dc-free sequences generated
by a Markov information source having maximum entropy. Knowledge of
such ideal, maxentropic, sequences with a spectral null at dc is essential for
the understanding of the basic trade-offs between the rate of a code and the
amount of suppression of low-frequency components that cab achieved at
maximum. The results obtained in this section will be exploited to derive
a figure of merit of implemented dc-balanced codes that takes into account
both the redundancy and the emergent frequency range with suppressed
components.

We start with the definition of the running digital sum of a binary se-
quence. The running digital sum of a sequence, in short, RDS, plays a
significant role in the analysis and synthesis of codes whose spectrum van-
ishes at the low-frequency end. Let

{xi} = {. . . , x−1, x0, . . . , xi, . . . }, xi ∈ {−1, 1}

be a binary sequence. The (running) digital sum zi is defined as

zi =
i∑

j=−∞
xj = zi−1 + xi. (8.1)

Figure 8.1 portrays the various signals defined above. It is assumed in this
diagram that the coded input signal in NRZI representation is translated
into the write signal using a change-of-state encoder. As spectral null codes
are used to tailor the spectrum of the encoded sequence, it will not be
too surprising that frequency-domain analysis of encoded sequences play an
important role in this section. Frequency-domain analysis of constrained

www.manaraa.com

8.2. PRELIMINARIES 199

sequences is based upon the average power spectral density or, as it is often
called the power spectrum.

i -1 -1 -1 +1 +1 +1 +1 -1 -1

0 0 1 0 0 0 1 0y
i

1

x

RDS

Figure 8.1: Running digital sum (RDS) versus time. Coded input sym-
bols (NRZI) are translated into the write signal (NRZ) using a precoder,
and the channel bits xi. In this example, the RDS assumes at most seven
values.

The power spectrum is given by the Fourier transform of the auto-correlation
function of the sequence (see Chapter 3). Alternatively, see (3.12), page 31,
we can express the power spectrum H(ω) as

H(ω) = lim
M→∞

E

1

2M + 1

∣∣∣∣∣∣

M∑

m=−M

xme
−jmω

∣∣∣∣∣∣

2

 , (8.2)

where the expectation operator E{.} is the expected value over the ensemble
of sequences {xi}. If the running digital sum, zi, is bounded, the power
spectrum, H(ω) vanishes at dc. The proof is fairly straightforward. Since,
by assumption, zi is bounded, we have

∣∣∣∣∣∣

M∑

m=−M

xm

∣∣∣∣∣∣
≤ B, for some B < ∞. (8.3)

Hence,

1

2M + 1

∣∣∣∣∣∣

M∑

m=−M

xm

∣∣∣∣∣∣

2

≤ B2

2M + 1

and

H(0) = lim
M→∞

E

1

2M + 1

∣∣∣∣∣∣

M∑

m=−M

xm

∣∣∣∣∣∣

2

 = 0.

www.manaraa.com

200 CHAPTER 8. DC-BALANCED CODES

Pierobon [284] showed that the power density function of an encoded se-
quence {xi} vanishes at zero frequency if, and only if the encoder is a finite
running digital sum encoder.

8.2.1 Capacity of dc-constrained sequences

It will be apparent to the reader, even before matters of implementation
are considered, that spectral shaping of a sequence by removing the low-
frequency components can be accomplished only at the price of a certain
rate loss. In order to provide an answer to such a fundamental question as
the rate loss incurred, we shall discuss in detail the work of Chien [59].

Chien studied bipolar sequences {xi}, xi ∈ {−1, 1}, that assume a finite
number of sum values, that is, at any instant i the RDS zi of such a sequence
meets the condition

N1 ≤ zi ≤ N2,

where N1 and N2 are two (finite) constants, N2 > N1. Sequences that have
a bound to the number of assumed sum values are termed z(-constrained)
or RDS-constrained sequences. The total number of sum values a sequence
assumes, denoted by

N = N2 −N1 + 1, (8.4)

is often called the digital sum variation (DSV). A question of vital impor-
tance is: How much loss in information rate does one incur by requiring
the running digital sum of a sequence to stay within certain limits? Chien
addressed the above problem of establishing the information capacity of
(z) sequences as a function of the digital sum variation N . In essence, the
solution to this problem is provided in Chapter 2. We commence by restat-
ing the previous channel constraints in terms of the connection matrix of a
finite-state machine.

Taking zi at any instant i as the state of the signal stream {xi}, then
the bounds to zi define a set of N allowable states denoted by {σ1, . . . , σN}.
Each transmission of an additional symbol xi can be considered as a transi-
tion from one state to another. For the N -state source, an N×N connection
matrix DN is defined by dN(i, j) = 1 if a transition from state σi to state
σj is allowable and dN(i, j) = 0 otherwise. The connection matrix DN for
the z-constrained channel is given by

dN(i+ 1, i) = dN(i, i+ 1) = 1, i = 1, 2, . . . , N − 1,

dN(i, j) = 0, otherwise.
(8.5)

A matrix, such as DN , having ones in the upper- and lower-diagonals and
zeros elsewhere is called a symmetric Toeplitz matrix. The process dis-
cussed above is also known as the random-walk problem with reflecting

www.manaraa.com

8.2. PRELIMINARIES 201

walls. Figure 8.2 portrays the Mealy-type along with the equivalent Moore-
type finite-state transition diagram for a sequence that assumes N = 4
digital sum values.

(a) (b)

+1 +1 +1

-1 -1 -1

+1

+1

+1 -1

-1

-1

Figure 8.2: (a) State transition diagram of a four-state Mealy-type finite-
state machine that generates a sequence with digital sum variation N = 4.
The states, shown as circles, are connected by arrows which represent
allowed transitions from one state to the other. Along the edges we have
indicated the symbols emitted by the machine when the chain goes from
one state to the other. (b) A six-state Moore-type representation of the
same channel.

In the Mealy-type finite-state machine the states, shown as circles, are con-
nected by arrows which represent admissible transitions from one state to
the other. Along the edges we have indicated the symbols emitted by the
machine when the chain goes from one state to the other. The equiva-
lent Moore-type finite-state machine (see Figure 8.2b) has six states. The
information-source model enables us to compute the Shannon capacity of
the constrained channel. As was established in Chapter 2, the capacity
equals the base-2 logarithm of the largest real eigenvalue of the connection
matrix.

It is usually not possible to find a simple, closed-form, expression for the
capacity, and one has to rely on numerical methods. This instance is an
interesting exception to the rule, as the structure of DN allows us to provide
a closed-form expression for the capacity of an RDS-constrained channel.
To this end, let

ΦN(z) = det[zI −DN] (8.6)

designate the characteristic polynomial of DN . The first few characteristic

www.manaraa.com

202 CHAPTER 8. DC-BALANCED CODES

polynomials ΦN(z) can be evaluated by hand:

Φ1(z) = z,

Φ2(z) = z2 − 1,

Φ3(z) = z3 − 2z,

Φ4(z) = z4 − 3z2 + 1.

The polynomials ΦN(z) have some interesting properties. For N > 2 we
can write down the following recursion relation:

ΦN(z) = zΦN−1(z)− ΦN−2(z), N = 3, 4, (8.7)

Equation (8.7) holds for N = 2 provided we define Φ0(z) = 1. To prove
(8.7), we expand the determinant in (8.6) with respect to the first column.
The eigenvalues of the matrix DN , which are denoted by λ1, . . . , λN are the
zeros of ΦN(z). The associated eigenvectors, denoted by vi, i = 1, . . . , N ,
are

vi = (Φ0(λi), Φ1(λi), . . . , ΦN−1(λi))
T . (8.8)

Introducing the notation z = 2 cos x, (8.7) becomes

ΦN(2 cos x) = (2 cos x)ΦN−1(2 cos x)− ΦN−2(2 cos x), N = 2, 3, . . . , .

Treating this recursion relation as a difference equation of ΦN(2 cos x), one
can express ΦN(z) in an alternative form. The equation ρ2 = (2 cos x)ρ− 1
has roots e∓jx, so that

ΦN(2 cos x) = a1e
jNx + a2e

−jNx,

where the constants a1 and a2 can be determined from the cases N = 0 and
N = 1. Thus

ΦN(2 cos x) =
sin(N + 1)x

sinx
,

or

ΦN(z) =
sin[(N + 1) cos−1(z/2)]

sin[cos−1(z/2)]
. (8.9)

The zeros of ΦN(z) are, as can easily be seen in (8.9),

λi = 2 cos
iπ

N + 1
, i = 1, . . . , N. (8.10)

Thus, the maximum real eigenvalue, i.e. the maximum zero of (8.9), of the
matrix defined by (8.5) is given by the simple expression

λ = max{λi} = 2 cos
π

N + 1
, (8.11)

www.manaraa.com

8.2. PRELIMINARIES 203

and thus the capacity of the z-constrained channel is

C(N) = log2 λ = log2 2 cos
π

N + 1
, N ≥ 3. (8.12)

Table 8.1 lists the capacity C(N) and sum variance versus the digital sum
variation N , which are deduced using (8.12) and (8.31). The quantity called
sum variance σ2

z(N) will be discussed in the next section. It can be seen
that the results shown in Table 8.1 are intuitively correct for extreme values
of N . If N → ∞ there is a greater degree of freedom to allow sequences
which, of course, entails a vanishingly small amount of rate loss.

Table 8.1: Capacity and sum variance of maxentropic (z) sequences ver-
sus digital sum variation N .

N C(N) σ2
z(N)

3 0.5000 0.5000
4 0.6942 0.8028
5 0.7925 1.1667
6 0.8495 1.5940
7 0.8858 2.0858
8 0.9103 2.6424
9 0.9276 3.2639
10 0.9403 3.9506
11 0.9500 4.7026

It can be seen that the sum constraint is not very expensive in terms of
rate loss when N is relatively large. For instance, a sequence that takes at
maximum N = 8 sum values has a capacity C(8)= 0.91, which implies a
rate loss of less than 10%.

8.2.2 Spectra of maxentropic sequences

In this section, we will proceed with our analysis of maxentropic RDS-
constrained sequences and derive expressions for the power density function.
To that end, let the eigenvector associated with the largest eigenvalue λ
of DN be denoted by v̂. The state-transition probability matrix Q that
maximizes the entropy of the N -state source when the connection matrix is
given, is (see Chapter 2)

Q =
1

λ
A−1DNA,

where A is the diagonal matrix A = diag(v̂1, . . . , v̂N). Since DN is symmet-
ric, the stationary probability πi pertaining to state σi is given by

πi = ρv̂2i = ρΦ2
i−1(λ), i = 1, 2, . . . , N,

www.manaraa.com

204 CHAPTER 8. DC-BALANCED CODES

where ρ is chosen to retain the normalizing condition

∑
πi = 1.

After an evaluation, we obtain for the steady-state distribution the following
simple expression:

πi =
2

N + 1
sin2 πi

N + 1
, i = 1, 2, . . . , N. (8.13)

As usual, a simple example may serve to clarify the method.

Example 8.1 Consider a sequence with digital sum variation N = 5. The
characteristic equation of

D5 =

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

is

z(z2 − 1)(z2 − 3) = 0,

so that the maximum real eigenvalue is λ =
√
3. The capacity of the constrained

sequence is

C(5) = log2 λ = log2
√
3 ' 0.792,

which coincides with (8.12) and Table 8.1. The corresponding eigenvector is

v̂ = (1,
√
3, 2,

√
3, 1)T .

The evaluation of the transition probabilities on condition that the Markov in-
formation source is maxentropic, is now a matter of a substitution, or

Q =

0 1 0 0 0
1/3 0 2/3 0 0
0 1/2 0 1/2 0
0 0 2/3 0 1/3
0 0 0 1 0

.

The stationary probability distribution vector is

π = (1/12, 1/4, 1/3, 1/4, 1/12).

Associated with the unifilar Markov information source is the auto-correla-
tion function of the running sum {zi}:

Rz(k) = E{zizi+k}.

www.manaraa.com

8.2. PRELIMINARIES 205

Equivalently, the power spectral density of the emitted sequence {zi} is

Hz(ω) =
∞∑

k=−∞
Rz(k)e

−jkω = Rz(0) + 2
∞∑

k=1

Rz(k) cos kω. (8.14)

For the sake of convenience, we shall assume E{zi} = 0. The auto-correla-
tion function of the sequence {zi}, may be expressed as (see Chapter 3)

Rz(k) = ζTΠQ|k|ζ, (8.15)

where ζT indicates the row vector

ζT = (ζ(σ1), ζ(σ2), . . . , ζ(σN))

and Π is the diagonal matrix Π = diag(π1, . . . , πN). Since it is assumed
that the values of {zi} are centered around zero, we obtain

ζ(σi) = i− N + 1

2
, i = 1, 2, . . . , N.

The preceding expressions are not very suitable for numerical purposes. The
following analysis is more convenient in that respect.

The N ×N state-transition matrix Q has N distinct eigenvalues {1, µ2,
. . . , µN} and corresponding left eigenvectors u1 = π,u2, . . . ,uN . The eigen-
vectors are distinct and constitute a basis, so that

Rz(k) = ζTΠQ|k|ζ =

η1π +

N∑

j=2

µ
|k|
j ηjuj

 ζ. (8.16)

The constants ηi, i = 1, . . . , N , can be found by evaluating Rz(k), k =
0, . . . , N − 1.

After having established an expression for the auto-correlation function
of the running sum sequence {zi}, it is a simple matter to find a relation for
the auto-correlation function for the sequence {xi}. By definition we have

zi = zi−1 + xi.

The corresponding auto-correlation function of the z-constrained sequence
{xi} in terms of the auto-correlation function Rz(k) is

Rx(k) =

{
2Rz(k)−Rz(k − 1)−Rz(k + 1), k 6= 0,
1, k = 0,

(8.17)

or, in frequency domain terms

Hz(ω) =
Hx(ω)

2(1− cosω)
, (8.18)

www.manaraa.com

206 CHAPTER 8. DC-BALANCED CODES

where Hx(ω) and Hz(ω) denote the spectra of {xi} and corresponding run-
ning sum {zi}, respectively.

We continue Example 8.1 with the computation of the power spectral
density function of the maxentropic (z) sequence with digital sum variation
N = 5, since it provides the opportunity to derive analytical expressions
that can be evaluated easily without machine computations.

Example 8.2 The auto-correlation function is of the form

Rz(k) = ζTΠQ|k|ζ.

The 5 × 5 state-transition matrix Q has five distinct eigenvalues {1, µ2, . . . , µ5}
and corresponding left eigenvectors u1 = π,u2, . . . ,u5. The eigenvectors are
distinct and constitute a basis, so that

Rz(k) = ζTΠQ|k|ζ =

η1π +

5∑

j=2

µ
|k|
j ηjuj

 ζ. (8.19)

The constants ηi, i = 1, . . . , 5, can be determined by evaluating Rz(k), k =
0, . . . , 4. The eigenvalues of Q are µ1 = 1, µ2 = −1, µ3 = 0, µ4 = 1/

√
3,

and µ5 = −1/
√
3. The corresponding left eigenvectors are (1/12, 1/4, 1/3, 1/4,

1/12), (1/12, -1/4, 1/3, -1/4, 1/12), (-1/2, 0, 1, 0, -1/2), (1,
√
3, 0,−√

3,−1), and
(−1,

√
3, 0,−√

3, 1). Since, for reasons of symmetry

ζ(σi) = −ζ(σN−i+1),

we obtain
Rz(k) = ζTΠQ|k|ζ = µ

|k|
4 η4u4ζ + µ

|k|
5 η5u5ζ

= α1

(
1

3

)|k/2|
+ α2(−1)|k|

(
1

3

)|k/2|
.

The constants α1 and α2 are found by substituting Rz(0) = 7/6 and Rz(1) = 2/3,
from which we obtain

α1 = 7/12 + 1/
√
3 and α2 = 7/12− 1/

√
3.

After a straightforward calculation, we find for the auto-correlation function for
the (z) sequence that takes N = 5 sum values:

Rx(k) =

1, k = 0

−3−(k/2+1), k > 0, k even

−2
33

−(k+1)/2, k > 0, k odd.

(8.20)

Writing out the relation of the power spectral density Hx(ω) gives

Hx(ω) = 1− 2

3
Re

∞∑

k=1

3−ke−j2kω − 4

3
Re

∞∑

k=1

3−ke−j(2k−1)ω

=
4

3

4− cosω − 3 cos 2ω

5− 3 cos 2ω
.

www.manaraa.com

8.2. PRELIMINARIES 207

Other closed-form expressions for the spectra of maxentropic (z) sequences
were derived by Kerpez [200]. By way of illustration, we have plotted in
Figure 8.3 the power spectral density function of maxentropic z-constrained
sequences for various values of the digital sum variation N .

0.00 0.10 0.20 0.30 0.40 0.50

0.0

0.5

1.0

1.5

2.0

N=3

5

7
9

ωο

H
 (

f)
x

Frequency f

Figure 8.3: Power density function Hx(ω) of maxentropic (z) sequences
against frequency f = ω/(2π) with digital sum variation N as a parame-
ter. For the case N = 5, we have indicated the cut-off frequency ω0. We
may read from the diagram that ω0 ≈ 2π × 0.068 ≈ 0.43.

It is seen that, of course, the spectral density is zero at zero frequency, but
it is more relevant to note that there is a region of frequencies, close to the
zero frequency, where the spectral density is low. The width of this region,
termed the notch width, is of great engineering relevance. Note in Figure
8.3 that the notch width decreases with mounting digital sum variation
N . The appropriate engineering balance between system cost, in terms of
redundancy, and performance, in terms of the width of the spectral notch,
cannot be judged without some quantitative measure. The width of the
spectral notch can be quantified by a parameter called the cut-off frequency.
To this end, let H(ω) denote the power density function of a sequence with
vanishing power at dc. The cut-off frequency of a dc-constrained sequence,

www.manaraa.com

208 CHAPTER 8. DC-BALANCED CODES

denoted by ω0, is formally defined by (see Figures 8.3 and 8.4, page 210),
[177, 97]

H(ω0) =
1

2
. (8.21)

In the next section, we will study the relationship between notch width and
capacity.

8.3 Performance assessment

At this juncture we have completed our discussion of maxentropic dc-ba-
lanced sequences. Our next task is to determine some simple bounds to the
performance of maxentropic dc-balanced sequences in terms of the spectral
notch width, ω0, that is the range of frequencies with suppressed compo-
nents of sequences with a spectral null at dc. These bounds underlie our
subsequent analysis of the performance of implemented dc-balanced codes.
We begin, since it is, as we will show shortly, closely related to the spectral
notch width, by computing the sum variance of maxentropic dc-balanced
sequences. The performance evaluation of various properties of dc-balanced
sequences is based on work first presented by Justesen [177]. He carried
out a comprehensive study on rates and spectra of digital codes, and as a
result of this work he discovered a remarkable and useful relation between
the sum variance s2z = E{z2i } and the width of the spectral notch, ω0.

The variance of the running digital sum can be expressed concisely in
terms of the auto-correlation function Rx(i) of the dc-balanced sequence.
To this end, consider

zm − z0 = x1 + x2 + · · ·+ xm.

The variance of the variable zm − z0 is

2s2z − 2E{zizi+m} =
m−1∑

j=−m+1

(m− |j|)Rx(j)

= m
m−1∑

j=−m+1

Rx(j)− 2
m−1∑

j=1

jRx(j).

Let Hx(ω) denote the power spectral density function of the sequence. As-
suming the function Hx(ω) is more or less ’well behaved’, that is, it is
smooth andHx(ω) ' aω2, ω ¿ 1, we take the limit for m → ∞, and use

lim
m→∞E{zizi+m} = 0

and

lim
m→∞

m−1∑

j=−m+1

Rx(j) = Hx(0) = 0,

www.manaraa.com

8.3. PERFORMANCE ASSESSMENT 209

we get

s2z = −
∞∑

i=1

iRx(i). (8.22)

Let us now, for the sake of convenience, assume that the auto-correlation
function Rx(i) is an exponentially decaying function of i, or, in mathemat-
ical terminology

Rx(0) = 1,

Rx(i) = ρr|i| , i 6= 0, |r| < 1,
(8.23)

where the constant ρ is chosen in order to allow the spectrum to vanish at
zero frequency, or Hr

x(0) = 0. Thus

Hr
x(0) =

∞∑

i=−∞
Rx(i) = 1 + 2

∞∑

i=1

Rx(i) = 0, (8.24)

whence

ρ = −1

2

1− r

r
. (8.25)

If r = 0 we have the special case for which

Rx(−1) = Rx(1) = −1/2,

Rx(i) = 0 , |i| > 1.

The corresponding power spectral density function, Hr
x(ω), is

Hr
x(ω) =

∞∑

i=−∞
Rx(i)e

−jiω

= 1 + ρ{re−jω + r2e−j2ω + · · ·+ rejω + r2ej2ω + · · ·}.
(8.26)

Now, since
∞∑

k=0

xk =
1

1− x
,

Hr
x(ω) = ρ

∞∑

i=0

(re−jω)i + ρ
∞∑

i=0

(rejω)i − 2ρ+ 1

= (1 + r)
1− cosω

1 + r2 − 2r cosω
.

(8.27)

Figure 8.4 shows the power spectral density function Hr
x(ω) against the

frequency f = ω/2π with the quantity r as a parameter. The subsequent
analysis provides an important relationship between the cut-off frequency,
the parameter r, and the sum variance. Substitution of Hr

x(ω) into (8.21)
yields

Hr
x(ω0) = (1 + r)

1− cosω0

1 + r2 − 2r cosω0

=
1

2
,

www.manaraa.com

210 CHAPTER 8. DC-BALANCED CODES

or

1− cosω0 =
1

2
(1− r)2.

For small values of ω0 we may use the approximation cosω0 ' 1− ω2
0/2, so

that
ω0 ' 1− r. (8.28)

The use of (8.22) yields the following expression for the sum variance:

s2z = −
∞∑

i=1

iRx(i) =
1

2(1− r)
. (8.29)

0.00 0.10 0.20 0.30 0.40 0.50

0.0

0.5

1.0

1.5

2.0

r = 0

r = 0.25

r = 0.5

Frequency f

H
 (
f
)

r x

ωo

r = 0.75

Figure 8.4: Power spectral density function Hr
x(ω) against frequency

f = ω/(2π) of sequences with an exponential decay of its auto-correlation
function Rx(i) = ρr|i| with the quantity r as a parameter. By way of
example, the cut-off frequency ω0 is shown for the curve with parameter
r = 0. It can be seen that a negative value of the parameter r shifts the
power towards the upper end of the base band.

A combination (8.28) and (8.29), and a little rearrangement yields an ap-
proximation of the cut-off frequency ω0 in terms of the sum variance, namely

2s2zω0 ' 1. (8.30)

Thus, for the sequence with an exponentially decaying auto-correlation
function, we conclude that the cut-off frequency is approximately inversely

www.manaraa.com

8.3. PERFORMANCE ASSESSMENT 211

proportional to the variance of the running digital sum. When the auto-
correlation function does not obey the assumed exponential decay, the situ-
ation is more complicated and no general statement can be made. In spite of
the fact that the relationship between sum variance and cut-off frequency
is only correct for dc-balanced sequences with an exponentially decaying
auto-correlation, recent studies have shown that it also applies to sequences
generated by implemented channel codes. Extensive computations of sam-
ples of implemented channel codes, made by Justesen [177] to validate the
reciprocal relation (8.30) between cut-off frequency and sum variance, have
revealed that this relationship is fairly reliable. This result has also mo-
tivated other researchers [353] to apply the sum variance as a valuable
criterion of the low-frequency characteristics of a channel code, which is
of practical significance since the sum variance of a dc-free sequence can
often be evaluated by simple calculations, even though the auto-correlation
function and corresponding spectrum are complicated functions.

Now that we have sharpened our tools with the above analysis, we can
proceed with the performance analysis of maxentropic dc-free sequences.
The sum variance E{z2i } of the ensemble of maxentropic (z) sequences,
denoted by σ2

z(N), where N is the DSV of the sequences, is simply given by

σ2
z(N) = E{z2i } =

N∑

k=1

(
N + 1

2
− k

)2

πk.

Using (8.13) and working out yields

σ2
z(N) =

2

N + 1

N∑

k=1

(
N + 1

2
− k

)2

sin2 πk

N + 1
.

It has been shown in a private communication by A.J. Janssen that the
above summation can be succinctly rewritten as

σ2
z(N) =

1

12
(N + 1)2 − 1

2 sin2 π
N+1

+
1

6
. (8.31)

Results of computations are collected in Table 8.1. From Figure 8.3 we
may read that, in the case N = 5, the indicated cut-off frequency is ap-
proximately 0.43. Given this, plus the fact that the sum variance σ2

z(5) =
7/6, (see Table 8.1) we find that twice the product of sum variance and
cut-off frequency is 1.008 which, at least in this specific case, is close to the
value predicted by (8.30). A plot of the sum variance versus the redun-
dancy 1−C(N), shown in Figure 8.5, affords more insight into the trade-off
between rate and performance of dc-balanced codes.

Figure 8.5 reveals that the relationship between the logarithms of the
sum variance and the redundancy is approximately linear. The immediate

www.manaraa.com

212 CHAPTER 8. DC-BALANCED CODES

engineering implications of the preceding outcomes are quite relevant. In a
Compact Disc player, for example, a high-pass filter is used in the receiver
(player) to pass on the one hand the information signal and to reject, on
the other hand, the low-frequency noise due to fingerprints on the disc. The
high-pass filter is chosen as a sound trade-off between the two conflicting
goals. The above theory reveals that more rejection of low-frequency noise
components is possible only at the expense of the rate of the code used,
which is proportional to the playing time of the disc. The type of curve
shown in Figure 8.5 presents the designer with a spectral budget, that is, if
the designer desires a certain width of the spectral notch, he/she knows the
price in terms of code redundancy.

0.01 0.10 1.00

0.1

1.0

10.0

N=3

4

5
6

7
8

9
10

12
14

1-C(N)

σ2z

Figure 8.5: Sum variance versus redundancy of maxentropic (z) se-
quences. The relationship is plotted as a solid line. Note, however, that
only a discrete set of points is achievable .

It is worth noting that the graphical results of Figure 8.5 can be expressed
analytically for large values of the digital sum variation N . From (8.31) it
is immediate that

σ2
z(N) ' (

1

12
− 1

2π2
)(N + 1)2 +O(

1

(N + 1)2
). (8.32)

Similarly

C(N) ' 1− π2

2 ln 2

1

(N + 1)2
, N À 1. (8.33)

www.manaraa.com

8.4. SIMPLE CODING SCHEMES 213

The above approximations plus inspection of (8.12) and (8.31) lead to a fun-
damental relation between the redundancy 1−C(N) and the sum variance
of a maxentropic (z) sequence, namely

0.25 ≥ (1− C(N))σ2
z(N) >

π2/6− 1

4 ln 2
= 0.2326. (8.34)

Actually, the right-hand bound is within 1% accuracy for N > 9. Equa-
tion (8.34) states that, for large enough N , the product of redundancy and
sum variance of maxentropic RDS-constrained sequences is approximately
constant. The relationship between sum variance (and implicitly, according
to (8.30), the cut-off frequency) and redundancy is very interesting, since
it reflects what we intuitively expect and illustrates very well the phrase
that there is no such thing as a free lunch. For a wider frequency range
of suppressed components, one has to pay more in terms of redundancy of
the sequence. Equation (8.34) will be exploited in the subsequent chapter
to establish a general figure of merit of implemented dc-constrained codes.
In summarizing the lessons to be learnt from the theory, it should be borne
in mind that the treatment given here applies solely to RDS-constrained
sequences. If the sequences comply with other constraints as well, for ex-
ample runlength constraints then, in general, the results derived above lose
their validity.

8.4 Simple coding schemes

In the next subsections, we will describe in more detail coding schemes for
generating dc-free sequences.

8.4.1 Zero-disparity coding schemes

Let a codeword x of length n, n even, consist of bipolar symbols xi, 1 ≤
i ≤ n, xi ∈ {−1, 1}. The disparity d(x) of a codeword is the sum of the
codeword symbols, or

d(x) =
n∑

i=1

xi. (8.35)

An obvious basic code to generate dc-free sequences, and certainly the sim-
plest to describe, is constituted by zero-disparity codewords, i.e of code-
words x for which d(x) = 0. In this scheme, each source word is uniquely
represented by a codeword that contains equally many ’one’s and ’zero’s.
The number of zero-disparity codewords, N0, of binary symbols (n even) is
given by the binomial coefficient

N0 =

(
n

n/2

)
. (8.36)

www.manaraa.com

214 CHAPTER 8. DC-BALANCED CODES

Table 8.2 shows the number of zero-disparity codewords as a function of the
codeword length n. Table 8.2 also presents the code rate, R, given by

R =
1

n
log2N0. (8.37)

The zero-disparity codewords can be concatenated without a merging rule.
That is, the sequence is encoded without information about the history, and,
obviously, there is a fixed relationship between codewords and source words.
Practical coding arrangements demand that the number of codewords is a
power of 2, so that a subset of the N0 available codewords must be used,
thus effectively lowering the code rate R. For example, since 217 = 131,072
and N0 = 184,756, we could take m = 17 and n = 20.

Table 8.2: Number of zero-disparity codewords and code rate versus
codeword length n.

n N0 R
2 2 0.500
4 6 0.646
6 20 0.720
8 70 0.766
10 252 0.798
12 924 0.821
14 3432 0.839
16 12870 0.853
18 48620 0.865
20 184756 0.875

For large values of n the binomial coefficient (8.36) can be approximated
using Stirling’s formula [206]. Then we find for the code rate

R ≈ 1− 1

2n
log2 n, n >> 1. (8.38)

The translation of source words into zero-disparity codewords is a challeng-
ing task, in particular when the codeword length is long. As discussed in
Example 6.2, page 139, enumerative encoding, using Pascal’s triangle, is
an attractive method, whose roots in the literature go back to the early
50s [216]. Alternatively the method by Knuth and Henry, to be discussed
in Section 8.9, can be used.

www.manaraa.com

8.4. SIMPLE CODING SCHEMES 215

8.4.2 Low-disparity coding schemes

Up to this point we have been concerned with the category of dc-balanced
codes which exclusively uses codewords of zero-disparity. A generalization
of the zero-disparity coding principle, quite straightforwardly, leads to the
alternate or low-disparity coding technique. Besides the set of zero-disparity
codewords, sets of codewords with non-zero disparity are used. The archety-
pal code has two alternative representations of the source words. The two
alternative channel representations have opposite disparity. The choice of
representing the source word with a codeword of positive or negative dis-
parity is stipulated by the polarity of the running digital sum just before
transmission of the new codeword. The encoder opts for a particular channel
representation with the aim of minimizing the absolute value of the running
digital sum after transmission of the new codeword. Zero-disparity code-
words can in principle be exploited in both modes and are usually uniquely
allocated to source words. For ease of implementation, zero-disparity code-
words are sometimes divided into two sets that are used in both modes.

The assignment of the source words to the various codewords is to some
extent arbitrary. There is, however, one important requirement that has
to be taken into account: the decoding should be state-independent to
circumvent serious error propagation. The structure of the low-disparity
encoder makes it possible, in all the most common practical codes, to choose
an assignment that permits state-independent decoding.

Obviously, if more subsets of codewords are used, the number of code-
words is larger than in the case of zero-disparity encoding (assuming equal
codeword length). Consequently, this allows a larger maximum code rate
for a given codeword length. Unfortunately, however, as we shall see in a
moment, the power in the low-frequency range will also increase if more
subsets are used, so that a trade-off between code rate and low-frequency
content has to be sought. Some basic properties of low-disparity coding
schemes are derived below.

The codebook comprises two sets, or pages, denoted by S+ and S−,
respectively. The set S+ comprises codewords of zero and positive disparity,
while the codewords in set S− have zero and negative disparity. Set S+

comprises (K + 1) subsets, designated by S0, S1, . . . , SK , (K ≤ n/2). The
elements of the subsets Sj are all possible codewords with disparity 2j,
0 ≤ j ≤ K. The codewords in S− are found by inversion of all n symbols
of the codewords in set S+ and vice versa. The cardinality Nj of the subset
Sj is the binomial coefficient

Nj =

(
n

n/2 + j

)
, 0 ≤ j ≤ K. (8.39)

The total available number of codewords in S+ (or for symmetry reasons in

www.manaraa.com

216 CHAPTER 8. DC-BALANCED CODES

S−), denoted by M , is

M = |S+| = |S−| =
K∑

j=0

Nj.

The code rate is simply given by

R =
1

n
log2M. (8.40)

An essential part of the low-disparity encoder is a counter which registers the
running digital sum. As the choice between a positive or negative disparity
of the codewords is made on a per word basis so as to minimize the absolute
value of the running digital sum after transmission of the new codeword, it
is not difficult to see that the running digital sum takes on a finite number of
values during transmission. Without loss of generality it can be assumed (by
a proper setting of the initial sum value at the beginning of the transmission)
that the sum values are symmetrically centered around zero. The set of
values the RDS assumes at the end (or start) of a codeword can be associated
with encoder states termed the terminal or principal states. It is immediate
that the set of principal states is a subset of the set of all RDS values the
sequence can take.

Let the terminal digital sum after transmission of the t-th transmitted
codeword be ∆(t). The sum after transmission of the (t+1)-th codeword is

∆(t+1) = ∆(t) + d(t+1),

where d(t+1) is the disparity of the (t + 1)-th codeword. The sign of the
disparity, by appropriately selecting the channel representation from S+ or
S−, is chosen to minimize the accumulated sum ∆(t+1). A code based on
this algorithm is said to be balanced. After some thought we conclude
that the quantity ∆(t) may assume one of the 2K values from the set
∓1, ∓3, . . . , ∓(2K − 1), provided the encoder is properly initialized. Ap-
parently, an encoder ruled by the previous algorithm generates a sequence
whose accumulated digital sum is preserved within some limits. It can eas-
ily be verified that the total number of RDS values that the sequence can
take, i.e. the digital sum variation, is

N = 2(2K − 1 +
n

2
) + 1 = 4K + n− 1. (8.41)

As an illustration, the RDS is shown as a function of symbol time interval
in Figure 8.6. The lines display the running digital sum of each of the
codewords and so give a visual picture of the encoding process. A chart like
this is called a trellis diagram. The code has codeword length of n = 6 and
it is constituted by the maximum numberK+1 = n/2+1 = 4 subsets. Note

www.manaraa.com

8.4. SIMPLE CODING SCHEMES 217

the 2K = 6 allowed sum values at the end of each codeword and also the
N = 4K + n− 1 = 17 values that the running digital sum can take within
a codeword. The encoder which generates a low-disparity sequence can be
modelled as a finite-state machine. The conjunction of a source word and
the terminal sum value ∆(t) determines the actual transmitted codeword
and the next terminal sum value ∆(t+1). Thus, the set of encoder states, (or
principal states) designated by Σp = {σ1, . . . , σ2K}, is the set of terminal
sum values.

un
ba

la
nc

e

+3

+1

-1

-3

-5

+5

time
0 1 2 3 4 5 6

Figure 8.6: Unbalance trellis diagram. The lines display the running
digital sum of each permitted codeword and give a visual picture of the
encoding process. The code has codeword length n = 6 and it uses the
four subsets. The thick curve shows the path taken by the codeword
’+−−−+−’, assuming that its initial unbalance is +3. The diagram is
similar to Figure 8.1, page 199, but here the time axis is initialized at the
start of each codeword.

In the computation of the power density function and the sum variance of
the encoded stream, we need to know the stationary probability of being
in a certain terminal state. For this purpose, we assume the source words
to be generated by a random independent process. Then the signal process
∆(t) is a simple stationary Markov process. The value that ∆(t) can take is
related to one of the 2K states of the Markov process (see Chapter 3). The
state-transition probability matrix Q whose entries are represented by qij,
where qij is the probability that the next codeword will take it to terminal
state σj given that the encoder is currently in state σi, can easily be found.

As an illustration, we have written down the matrix Q for 2K = 6

www.manaraa.com

218 CHAPTER 8. DC-BALANCED CODES

terminal states

Q =

p0 p1 p2 p3 0 0
0 p0 p1 p2 p3 0
0 0 p0 p1 p2 p3
p3 p2 p1 p0 0 0
0 p3 p2 p1 p0 0
0 0 p3 p2 p1 p0

The transition probability qij is the proportion of codewords in the mode
used in state σi having the appropriate disparity d for the transition to
encoder state σj = σi+d/2. The transition probability pi equals the rel-
ative number of codewords in subset Si, or pi = Ni/M . The special
structure of the matrix Q allows us to establish a closed expression of the
steady-state probability vector π whose entries are, for reasons of symmetry,
(πK , . . . , π1, π1, . . . , πK), where πi is the probability of being in the encoder
state σi with corresponding sum value (2i − 1). By definition we have the
identity

πQ = π,

which amounts to the following system of linear equations:

πKpj + πK−1pj−1 . . .+ π1pK−j + π2pK−j+1 . . . = πK−j, j = 0, . . . , K − 1.

After evaluating we arrive at

ρπK−i =
K∑

j=K−i

pj, 0 ≤ i ≤ K − 1, (8.42)

where ρ is determined from the normalization

K∑

i=1

πi =
1

2
.

With (8.42), we find

ρ = 2
K∑

i=1

ipi. (8.43)

8.4.3 Polarity switch method

Bowers [42] and Carter [50], published a construction of dc-balanced codes
where the (n− 1) source symbols are supplemented by one extra bit set to
’one’ to form an n-tuple. The code rate of the polarity bit code is

R = 1− 1

n
.

If the accumulated disparity at the start of the transmission of a new n-tuple
and the disparity of the new n-tuple have the same sign, then all symbols

www.manaraa.com

8.5. COMPUTATION OF THE SPECTRUM 219

in the n-tuple (i.e. including the polarity bit) are inverted (complemented),
otherwise the n-tuples are left intact before transmission. The accumulated
disparity is tallied by a reversible counter connected to the output line.
If the disparity of the codeword is zero, the encoder has more room for
making an optimal choice. Spectral line components can be avoided by
randomly setting the polarity bit. Greenstein [116] suggested to transmit
the words such that the ’polarity’ of the words equals that of its most recent
nonzero value. Alternatively, Kim [205] proposed to invert a subset of the
codeword symbols. A performance analysis is not available in the literature.
Murdock [261] presented an embellishment of the basic scheme.

The decoder is very simple, since it merely observes a possible inver-
sion of a received n-tuple by inspecting the sign of the polarity bit and,
according as this is positive or negative, reads the remaining bits directly
or complemented.

8.5 Computation of the spectrum

The codeword symbols are, in general, transmitted serially at intervals of
unit duration. The emitted signal x(t) can be expressed by

x(t) =
∞∑

j=−∞

n∑

i=1

xj,is[t− (jn+ i− 1)], (8.44)

where we revert to the notation of Chapter 3, and denote the jth transmitted
codeword in the sequence by a row vector xj with elements xj,i. The symbols
xj,i are governed by the code rules and the source words to be encoded.

In Chapter 3, a complete and systematic analysis for computing the
auto-correlation function of fixed-length-codeword-based channel codes has
been provided. The analysis presented can, in principle, be directly used to
compute the spectrum of alternate bi-mode codes. The structure of full-set
alternate bi-mode codes allows a more efficient computation to be detailed
here. The main advantage of our approach is that we obtain a closed formula
for the spectrum of codes with two subsets and simple expressions for code
spectra with a larger number of subsets. The spectral density is computed
assuming that the source words are equiprobable.

In general, the power spectral density function can be written as, see
(3.42), page 40,

Hx(ω) = Hxc(ω) +Hxd(ω)
∞∑

k=−∞
2πδ(ω − 2πk/n), (8.45)

where Hxc(ω) and Hxd(ω) represent the continuous and discrete components

www.manaraa.com

220 CHAPTER 8. DC-BALANCED CODES

of the spectrum. According to (3.43) and (3.44), page 41, we have

Hxc(ω) =
1

n
ω(R0 −R∞)ω∗ +

2

n
Re

∞∑

k=1

ω(Rk −R∞)ω∗e−jknω. (8.46)

and

Hxd(ω) =
1

n2
ωR∞ω∗, (8.47)

where
Rk = E{xT

l xl+k}, l any integer,

and R∞ is the limit of the correlation matrices Rk as k → ∞. The row
vector ω with transposed conjugate ω∗ is defined as

ω = (ejω, . . . , ejnω). (8.48)

The following two observations facilitate the computation of the spectrum
and, in fact, they provide the grounds that allow us to write down a simple
closed-form expression for the spectral contents of the dc-balanced sequence
under consideration.1

1. The source words are represented by zero-disparity codewords or are
alternately represented by codewords of opposite polarity of the dis-
parity. Since the source words are assumed to be drawn with equal
probability, we conclude that codewords of disparity d and −d are
transmitted with equal probability. Thus we find R∞ = 0 or, stated
alternatively, it appears that the discrete components vanish in this
case the spectrum of full-set low-disparity schemes is continuous.

2. The correlation between symbols of xj1 and xj2 , j1 6= j2, depends
only on the number of codewords separating the two codewords xj1

and xj2 , that is, on the number of codewords in the interval (j1, j2).
This can be seen as follows. Assume that the source symbols are
produced by a random and independent process then, as a result, the
consecutive codewords would also be uncorrelated. Any correlations
are therefore due only to the alternations of the codewords. As an
immediate consequence, the expectation E{xT

j1
xj2} depends, at most,

on the number of codeword alternations between xj1 and xj2 .

Since, as said above, the correlation between symbols in xj1 and xj2 j1 6= j2,
depends only on the number of codewords in the interval (j1, j2), we infer

1The nice properties only hold provided all possible codewords of the various subsets
are used. If the subsets are truncated, for example, to meet specific considerations or to
cater for a convenient size of repertoire, such as a power of two, the subsequent analysis
can only be used as an approximation.

www.manaraa.com

8.5. COMPUTATION OF THE SPECTRUM 221

that the correlation matrix Rk = E{xT
l xl+k}, k = 1, 2, . . ., consists of n2

identical entries which we will denote by the scalar rk, so that

Rk = rkU, k = 1, 2, . . . , (8.49)

where U is an n×n matrix, each of whose elements is unity. The correlation
matrix R0, on the other hand, has unity elements on the main diagonal; the
other elements are all equal and are denoted by r0. Thus

R0 = (1− r0)I + r0U, (8.50)

where I denotes the identity matrix. According to (3.39), page 39, the
phase-averaged auto-correlation function R(.) is

nR(i+ jn) =
n−i∑

m=1

[Rj]m,i+m +
n∑

m=n−i+1

[Rj+1]m,i+m−n, 0 ≤ i ≤ n− 1 (8.51)

where [Rj]u,v denotes the u, v entry of Rj. The auto-correlation function
R(.) can now be expressed in terms of the set of numbers {ri} :

R(i+ jn) =
1

n
{(n− i)rj + irj+1}, j ≥ 0, 0 ≤ i ≤ n− 1,

R(0) = 1.
(8.52)

In words, the auto-correlation coefficients R(i + jn) can be computed by
a linear interpolation of the quantities rj and rj+1. The spectrum H(ω)
(note that for the sake of convenience we omitted the subscript) of such a
sequence is

H(ω) =
1

n
ωR0ω

∗ +
2

n
Re

∞∑

k=1

ωRkω
∗e−jknω.

This expression for the continuous spectrum contains matrix products which
can be simplified. Using definition (8.48), we have

ωR0ω
∗ = n(1− r0) + r0ωUω∗.

Using the above results yields

H(ω) = 1− r0 +
1

n
r0ωUω∗ +

2

n
ωUω∗Re

∞∑

k=1

rke
−jknω.

www.manaraa.com

222 CHAPTER 8. DC-BALANCED CODES

The expression ωUω∗ can be worked out as follows

ωUω∗ = [ejω ej2ω . . . ejnω]

1 1 . . . 1
1 1 . . . 1
. .
1 1 . . . 1

e−jω

e−j2ω

.
e−jnω

=
n∑

i=1

n∑

k=1

ej(i−k)ω

=
n−1∑

k=−n+1

(n− |k|)ejkω

= n+ 2
n−1∑

k=1

(n− k) cos kω =

(
sinnω/2

sinω/2

)2

= n2F 2(ω),

where

F (ω) =
sinnω/2

n sinω/2
.

After evaluation of the preceding expression, we obtain the spectrum in
terms of the quantities ri, namely

H(ω) = 1− r0 + nF 2(ω)

{
r0 + 2

∞∑

i=1

ri cos inω

}
. (8.53)

The spectrum vanishes at ω = 0, or H(0) = 0, so that we conclude

1 + (n− 1)r0 + 2n
∞∑

i=1

ri = 0. (8.54)

As a direct consequence, we derive for sequences that are a concatenation
of zero-disparity blocks, which obviously satisfy ri = 0, i 6= 0,

r0 = − 1

n− 1
.

The corresponding auto-correlation function R(k) of the concatenated se-
quence follows from (8.52):

R(k) =

1, k = 0
k − n

n(n− 1)
0 < k ≤ n

0, k > n.

(8.55)

www.manaraa.com

8.5. COMPUTATION OF THE SPECTRUM 223

The power density function of zero-disparity codeword-based channel codes
is

H(ω) =
n

n− 1
{1− F 2(ω)}, (8.56)

which agrees with the outcomes derived in Example 3.4, page 47.
The calculation of the numbers ri, K > 0, is a tedious, but straightfor-

ward evaluation of (8.46) and the results of Chapter 3. Therefore we merely
state the final results. The correlation function ri is given by

ri = cT1Q
i−1c2, i ≥ 1, (8.57)

where Q is the state-transition probability matrix and

Q0 = I.

The 2K-vectors c1 and c2 are given in the interval 1 ≤ i ≤ K by

c1(i+K) = − 2

n

K∑

j=i+1

(j − i)πjpj−i −
K−i∑

j=0

(j + i)πj+1pj+i

and

c2(i+K) = − 2

n

K∑

j=1

jpj. (8.58)

For symmetry reasons:

c1(i) = −c1(2K − i+ 1) and c2(i) = −c2(2K − i+ 1), 1 ≤ i ≤ K.

The correlation coefficient r0 is not found by (8.57). The number r0 equals
the correlation of symbols in the same codeword or r0 = E{xj1xj2}, where
the symbol positions j1 and j2 are in the same codeword and j1 6= j2. The
coefficient r0 can be computed with (8.54). A closed-form expression is
derived in the Appendix to this chapter, page 239, where the sum variance
of alternate codes is computed (see, for example, (8.83)).

Example 8.3 As an illustration, we study the simplest type of alternate code,
in which two alternative codewords may represent a given source word. We
will determine the spectrum and auto-correlation function for such a code in
terms of the codeword length. To this end, consider the two-state process with
K = 1. The preceding expressions for the spectrum and correlation function now
become manageable. For reasons of symmetry, the steady-state distribution is
π = (1/2, 1/2). The cardinalities of the two codeword subsets S0 and S1 are

N0 =

(
n

n/2

)
and N1 =

(
n

n/2 + 1

)
,

whence

p0 =
N0

N0 +N1
=

n+ 2

2(n+ 1)

www.manaraa.com

224 CHAPTER 8. DC-BALANCED CODES

and

p1 = 1− p0 =
n

2(n+ 1)
.

Substitution in (8.58) yields

c1(1) = −c1(2) = −p1
n

=
−1

2(n+ 1)

and

c2(1) = −c2(2) =
2p1
n

=
1

(n+ 1)
.

The 2× 2 transition matrix Q is given by

Q =

[
p0
p1

p1
p0

]
=

1

2(n+ 1)

[
n+ 2

n

n

n+ 2

]
.

An analytic expression for Qi is

Qi =
1

2

[
1

1

1

1

]
+

1

2(n+ 1)i

[
1

−1

−1

1

]
, i = 1, 2,

After evaluation of (8.57), we obtain

ri = cT1Q
i−1c2 = − 1

(n+ 1)(i+1)
, i = 1, 2,

Applying (8.54) it follows that this equation also holds for i = 0, whence

ri = − 1

(n+ 1)(i+1)
, i = 0, 1,

Substituting this equation in (8.53) and working out will express the spectrum
of the two-state alternate code as

H(ω) = (1− a)

{
1− a2n2F 2(ω)

1 + a2 + 2a cosnω

}
, (8.59)

where a = −1/(n + 1). Evaluating yields the second derivative of the spectrum
at ω = 0 as

H(2)(0) =
1

6
(n+ 2)(n+ 11). (8.60)

Figure 8.7 shows the power density function of two-state low-disparity codes

against the frequency f = ω/2π, and codeword length n as a parameter.

www.manaraa.com

8.6. PERFORMANCE APPRAISAL 225

0.00 0.10 0.20 0.30 0.40 0.50
0.0

0.5

1.0

1.5

P
S

D

Frequency f

n=8 26 4

Figure 8.7: Power density function against frequency of low-disparity
dc-free codes with two subsets versus frequency f = ω/2π and codeword
length n as a parameter.

8.6 Performance appraisal

A notable frequency-domain characteristic of dc-balanced codes, the cut-off
frequency, can be estimated by evaluating the sum variance of the code
stream. The key to this approach is Justesen’s relation (8.30), page 210,

2s2zω0 ' 1,

which provides a simple relationship between the sum variance s2z and the
cut-off frequency ω0 of a dc-balanced sequence. Thus the value of s2z fur-
nishes a straightforward characterization of the spectral behavior of dc-
balanced codes. Of course, the reciprocal of the sum variance provides only
an approximation to the cut-off frequency and although this weakness in
our result is certainly undesirable, it appears to be a necessary compromise
if we are to obtain simple analytical results. The advantage in simplicity to
be gained from using the sum variance as a descriptor is obvious, since the
only alternative now available for exactly computing the cut-off frequency
is numerical analysis. The accuracy of Justesen’s relation is a topic to be
addressed in a later section.

www.manaraa.com

226 CHAPTER 8. DC-BALANCED CODES

Define the moments

um =
K∑

i=1

impi, m ∈ {1, 2, 3}. (8.61)

Then from the Appendix to this chapter, we find the variance of the terminal
sum values

E{z20} = 2
K∑

i=1

(2i− 1)2πi =
4

3

u3

u1

− 1

3
(8.62)

and the variance of the complete sequence

s2K =
4

3

u3

u1

+
n− 1

6
− 2

n+ 1

3n
u2. (8.63)

We now apply the results of the sum variance analysis in the following
examples which describe easily calculable cases.

Example 8.4 When codewords of zero-disparity are employed exclusively, that
is, K = 0, we obtain from (8.63), since E{z20} = 0, the following expression for
the sum variance:

s20 =
n+ 1

6
.

Example 8.5 A closed-form expression for the sum variance can be obtained
for codes where two subsets, namely S0 and S1, are used for encoding. We invoke
the numerical results derived in Example 8.3, page 223, and obtain

p1 =
n

2(n+ 1)
.

After substitution and working out (8.61) and (8.63) we obtain

u1 = u2 = u3 = p1,

so that

s21 =
4

3
+

n− 1

6
− 2

n+ 1

3n
p1 =

n+ 5

6
.

Example 8.6 The analysis developed in the preceding sections allows us to
derive an expression for the sum variance of sequences generated by the polarity
bit encoding principle. The code rate of the polarity bit code is

R = 1− 1

n
.

The number of subsets isK+1 = n/2+1 (n even), so that the number of terminal
sum values is 2K = n. The effective number of zero-disparity codewords N0 is
halved by the random choice of the ’polarity’ of these words with respect to the
maximum number used in the low-disparity coding principle, or

N0 =
1

2

(
n

n/2

)
.

www.manaraa.com

8.6. PERFORMANCE APPRAISAL 227

The number of codewords of non-zero disparity is not changed, or

Ni =

(
n

n/2 + i

)
, 1 ≤ i ≤ n

2
.

The total number of codewords of non-negative disparity is

M = N0 +

n/2∑

i=1

Ni = 2n−1.

Using some properties of binomial coefficients, a routine computation yields

u1 = n

(
n

n/2

)
2−(n+1),

u2 =
1

4
n

and

u3 =
n

2
u1.

Evaluation of (8.63) yields

s2P =
2n− 1

3
, (8.64)

where s2P designates the sum variance of the polarity bit encoded sequence.

Example 8.7 If all codewords are used, i.e. K = n/2, then

M = 2n−1 +
1

2

(
n

n/2

)

and

s2n/2 =
5n− 1

6
− n+ 1

12M
2n. (8.65)

For other values of the number of subsets used in the encoding table, it was
not possible to obtain such simple analytical expressions. The outcomes of
the computations are collected in Table 8.3, where the redundancy 1 − R
and the digital sum variation N of the code are also given (see (8.41)). After
a study of Table 8.1, page 203, and Table 8.3, several interesting facts now
come to the fore. The remarkably simple block code with parameters n = 2
and K = 0, termed the bi-phase code, attains 100% of the capacity and
the sum variance of the maxentropic sequence with digital sum variation
N = 3.

www.manaraa.com

228 CHAPTER 8. DC-BALANCED CODES

Table 8.3: Sum variance, digital sum variation N and redundancy 1−R
of full-set alternate codes.

n K N s2K 1−R
2 0 3 0.50 .500
2 1 5 1.17 .208
4 1 7 1.50 .170
4 2 11 2.56 .135
6 1 9 1.83 .145
6 2 13 3.20 .107
6 3 17 3.94 .101
8 1 11 2.17 .128
8 2 15 3.68 .092
8 3 19 4.92 .083
8 4 23 5.32 .081

The two-state alternate block code with parameters n = 2 and K = 1
achieves 100% of the capacity and the sum variance of the maxentropic
sequence with digital sum variation N = 5. It was shown by Ashley and
Siegel [10] that other implemented 100% efficient binary dc-balanced codes
are not possible. Figure 8.8 serves to provide a visual performance char-
acterization of the implemented codes discussed above. Figure 8.8 shows
the sum variance of various dc-balanced codes as a function of the redun-
dancy 1−R for selected values of the parameters K and n. For comparison
purposes, the sum variance is plotted versus the redundancy 1 − C(N) of
maxentropic (z) sequences (see (8.12) and (8.31)). There are some impor-
tant conclusions that can be drawn. It is noteworthy that the performance
of zero-disparity encoding diverges from the maxentropic bound with grow-
ing codeword length. It is also clear from the figure that the use of two
codeword subsets, that is K = 1 is worthwhile in terms of sum variance and
redundancy in a large range of the code redundancy.

For the sake of convenience we have opted to compute the sum variance
in lieu of the cut-off frequency. The justification of this approach is based
on Justesen’s relation (8.30), page 210. To validate our course of action, the
cut-off frequency was calculated by numerical procedures, invoking (8.53),
(8.57), and (8.58), and compared with the reciprocal of the sum variance of
the coded sequence. Consideration of computational results, in the range
of code parameters listed in Table 8.3, reveals that Justesen’s relation be-
tween sum variance and actual cut-off frequency is accurate to within a few
percent, which is indeed a fascinating result.

www.manaraa.com

8.6. PERFORMANCE APPRAISAL 229

Redundancy (log)

S
um

 v
ar

ia
nc

e
(lo

g)

0.05 0.1 0.5

5

1

0.5

maxentropic bound
polarity bit

low-disparity zero-disparity

Figure 8.8: Sum variance of various dc-balanced codes as a function of the
redundancy 1−R with the code parameters K and n. As a reference, the
sum variance is plotted versus the redundancy 1− C(N) of maxentropic
(z) sequences.

8.6.1 Efficiency of simple codes

We next employ the theory of maxentropic (z) sequences, developed in
Section 8.2, to appraise the efficiency of the previously discussed dc-balanced
codes. It is customary to define the rate efficiency of an implemented
channel code as the ratio of the code rate and the noiseless channel capacity
given the channel constraints, or

η =
R

C(N)
,

where η is the efficiency of the implemented code, C(N) the capacity of the
Chien channel (see (8.12), page 203) and N the digital sum variation of the
channel code. In our context, the most desirable code is maxentropic and
this will correspond with an efficiency of 100%.

As an illustration, let n = 4 and K = 1. In this instance, we find from
Table 8.3 a sum variation and code rateN = 7 and R = 0.83, respectively, so
that for this channel code an efficiency η = 0.83/0.886 = 95% (see Table 8.1,
page 203) is concluded. The sum variance of the maxentropic sequence with

www.manaraa.com

230 CHAPTER 8. DC-BALANCED CODES

N = 7 is 2.09 (see again Table 8.1). The sum variance of the implemented
code is 1.5, which amounts to 1.5/2.09 = 72% of the sum variance of the
maxentropic (z) sequence with N = 7. It is clear that the comparison
of dc-balanced channel codes with maxentropic (z) sequences should take
into account both the sum variance and the code rate. We thus define the
encoder efficiency as

E =
{1− C(N)}σ2

z(N)

{1−R}s2 . (8.66)

The encoder efficiency E, as defined in (8.66), compares the ’redundancy-
sum variance products’ of the implemented code and the maxentropic se-
quence with the same digital sum variation as the implemented code. Note
that for N > 9 the ’redundancy-sum variance product’ of maxentropic
(z) sequences is approximately constant (see (8.34), page 213) and equals
0.2326.

0

0.4

1

0 5
0

0.4

1

0 5 20
0

0.2

0.6

0.8

1

0 5 10 15

zero disparity

low disparity

polarity bit

Codeword length n

E
ffi

ci
en

cy
 E

Figure 8.9: Efficiency of simple alternate channel codes.

The efficiency, E, of various codes versus codeword length is plotted in
Figure 8.9. Examination of the family of result curves highlights several
important characteristics. We observe that the low-disparity codes fall close
to the performance of maxentropic sum constrained sequences, provided the
codeword length is short. As the block length n increases, the efficiency of
the implemented codes diminishes. For example, when n = 2 the efficiency
of the zero-disparity code format is unity, it decreases to 60% when n = 20.
Qualitatively, the same behavior is found for low-disparity coding schemes.

The polarity bit-encoding principle has the virtue of simple implemen-
tation, but on the other side of the balance, as we can see from Figures 8.8
and 8.9, it has a poor performance in terms of sum variance/redundancy

www.manaraa.com

8.7. HIGH RATE DC-BALANCED CODES 231

product and its performance is definitely far from optimal in the depicted
range. The figures reveal that, for a given rate, the sum variance of a se-
quence encoded according to the polarity bit principle is typically 2.5 times
that of maxentropic (z) sequences. Elaborating on (8.34), (8.63), and (8.66)
shows that for long codewords the efficiency E asymptotically diminishes to
35%. In the range 0.8 < R < 0.9, we note the debit side of this simple code:
for a desired width of the spectral notch a loss of approximately 15% in
code rate. Figures 8.8 and 8.9 show the superiority of zero-disparity codes
with respect to polarity bit encoding in the most practical (1 − R) inter-
val. A calculation shows that for an unpractically long codeword of length
n > 160, the polarity bit encoding principle outperforms the zero-disparity
encoding.

8.7 High rate dc-balanced codes

In certain applications of channel codes, specifically digital recording on
magnetic tape or transmission over a fiber-optic network, it has been found
that a rate R = 8/10, dc-balanced channel code has attractive features [343,
342, 321] both in terms of system penalty and hardware realization. Most
of the implementations in use are block codes which translate 1 byte (8 bits)
into 10 channel symbols.

Clearly a zero-disparity block code is impossible since the number of
available 10-bit zero-disparity codewords, 252, is smaller than required. A
two-state encoder offers the freedom of at maximum 252 + 210 = 462 code-
words. Since only 256 codewords are required, this evidently offers a large
variety of choices. The codebook can be tailored to particular needs, such
as minimum dc-content and/or ease of implementation. It is therefore not
too surprising that numerous variants have been described in the literature,
in patent literature in particular. Table 8.4 shows the main parameters of
selected dc-constrained 8b10b and 16b20b codes documented in the liter-
ature (for a more comprehensive survey of 8b10b codes, see the paper by
Tazaki [321]).

The coding scheme designed by Widmer and Franaszek [342] is of in-
terest due to its special structure. In their scheme, each incoming byte is
partitioned into two sub-blocks of five and three bits, respectively. Five
binary input lines are encoded into six binary output lines following the di-
rections of the 5b6b look-up table and the disparity control. Similarly, the
three remaining input bits are encoded into the remaining four output bits
under the rules of a 3b4b look-up table and the disparity control. To a large
extent the 5b6b and 3b4b encoders operate independently of each other on
the basic principles of the bi-mode encoder. The number of available code-
words is (20 + 15)× (6+4) = 350. Modifications in the translation tables

www.manaraa.com

232 CHAPTER 8. DC-BALANCED CODES

have been made to reduce the maximum runlength and the digital sum
variation, define special characters outside the data alphabet and minimize
implementation cost at high data rates.

time

un
ba

la
nc

e

+3

+2

+1

0

-1

-2

-3

0 1 2 3 4 5 6 7 8 9 10

Figure 8.10: Unbalance trellis diagram of Widmer-Franaszek code. The
8b10b is constituted by a 5b6b and a 3b4b encoder which operate to a
large extent independently in accordance with the basic principles of the
bi-mode encoder. Note that the unbalance, or running digital sum, only
takes two values at the symbol positions 0, 6, and 8.

A trellis diagram of the encoder is portrayed in Figure 8.10. An improve-
ment of the above Widmer/Franaszek code was granted to Westby [339].
Another code of great practical interest is the Fukuda2 code, employed
as the recording code in the DAT digital audio tape recorder [104]. The
8b10b code used in the DAT recorder is designed to function well in the
presence of crosstalk from neighboring tracks, allow the use of the rotary
transformer, and have a small ratio of maximum to minimum runlength
in order to ease overwrite erasure. Essentially, the code operates on the
low-disparity principle. The encoder has two states, and the codebook con-
tains 153 zero-disparity codewords and 103 codewords of disparity ∓2. The
hardware of the encoder and decoder has been reduced by computer op-
timizing of the relationship between the 8-bit source words and the 10-bit
codewords. This has been done so that the conversion can be performed
in a small programmed logic array. The codewords are stored using NRZI
notation. The details of the look-up tables for encoding and decoding can
be found in Fukuda et al. [104]. Only codewords of disparity 0 and +2 are
produced by the logic, since the codewords of disparity -2 can be obtained
by reversing the first symbol of the codeword. The maximum runlength is 4
and the sum variance of this code is 1.71. A variant of this 8b10b code, also

www.manaraa.com

8.8. DC-FREE CODE WITH ODD CODEWORD LENGTH 233

reported by Fukuda et al., possesses the virtue of reduced sum variance,
1.325, at the expense of a slightly increased maximum runlength.

Table 8.4: Main parameters of R = 8/10 dc-constrained codes.

Reference N Tmax

Stevens [309] 7 4
Shirota [299] 7 6
Widmer [343,342, 344] 7 5
Fukuda1 [104] 7 5
Fukuda2 [104] 7 4
Immink [147] 6 5
Fredrickson [99] 6 4

Very few attempts have been made to design a code with a rate greater
than 8/10. Specifically, codes of rate 16/18 have been published. Widmer
presented a rate 16/18, (0,6) dc-free code [341]. In a similar vein as the above
rate 8/10 code, the input data stream is broken into a 9-bit and a 7-bit sub-
block and encoded separately into sub-blocks of 10 and 8 bits, respectively,
while maintaining both dc balance and runlength constraints across all block
and sub-block boundaries, i.e. the code comprises two alternating, bi-mode,
codes of rate 9/10 and 7/8, respectively. A dc-free code of the same rate,
16/18, was also presented by Soljanin [305]. The 16-bit input word is split
into two bytes, i.e., into two 8-bit words, and each byte is mapped to a 9-
bit word. Immink presented a rate 8/9 code [153] that was found using the
state-splitting design method (see Chapter 7). Other codes of odd codeword
length will be discussed in the next section.

8.8 Dc-free code with odd codeword length

In this section, we will focus on dc-free codes with odd codeword length n.
Let x denote the n-tuple (x1, . . . , xn), where xi ∈ {−1, 1}, then we

define, see (8.35), the disparity of x as

d(x) =
n∑

i=1

xi.

If we require that the running digital sum after concatenation of a new code-
word is not larger (in absolute terms) than that at the beginning then each
source word must have a representation of zero-disparity or it must have
two alternative representations of opposite disparity. The words available

www.manaraa.com

234 CHAPTER 8. DC-BALANCED CODES

can easily be computed. Let N− and N+ denote the number of codewords
with d(x) ≤ 0 and d(x) ≥ 0, respectively. Then, we find

N− = N+ =

2n−1, n odd,

2n−1 + 1
2

(
n
n
2

)
, n even.

(8.67)

When n is even, we are in the comfortable position that we can choose 2n−1

codewords from the many candidates available. For n odd, on the other
hand, it can be seen that there are just enough codewords available to cater
for a rate (n− 1)/n code. The implementation of the latter code is termed
polarity switch code, where (n − 1) source symbols are supplemented by
one symbol called the polarity bit. The encoder has the option to transmit
the n-bit words ”as is” or to invert all symbols. The choice of a specific
translation is made in such a way that the RDS after transmission of the
word is as close to zero as possible. The polarity bit is used by the decoder to
undo the action of the encoder. Spectral properties of the polarity bit code
have been investigated in the previous section. From the above deliberation,
it seems, at first glance, that, for n odd, no codes other than the polarity
switch method are feasible. In the next subsection, we will demonstrate
otherwise.

8.8.1 Alternative definition of RDS.

The crux of the new class of dc-free code is the redefinition of the running
digital sum. Figure 8.11 will be used to explain the various signals. The
n-tuple y is represented in NRZI notation, and translated into x with sym-
bols {1,−1} using a change-of-state encoder (precoder). In the classical
definition of the precoding operation, it is assumed that transitions occur
at the start of the bit cells. In the new definition of the precoding operation,
transitions are assumed to occur halfway the bit cells. It can be seen that
the contribution to the RDS (after precoding using the new definition) of
the 9-bit word y = ’100100010’ is nil, while, using the conventional precod-
ing definition, see Figure 8.1, page 199, the contribution of the same input
word y is -1.

Let x0 be the value of the last bit preceding the codeword x. It can be
verified that the contribution of the codeword y to the RDS after precoding
using the new definition, called the disparity of y, and denoted by ds(y, x0),
is

ds(y, x0) =
n∑

i=1

xi + (w(y) mod 2)x0, (8.68)

where w(y) denotes the weight of y. The first right-hand term,
∑

xi, is the
”conventional” contribution of x to the RDS, and the second term expresses

www.manaraa.com

8.8. DC-FREE CODE WITH ODD CODEWORD LENGTH 235

a correction term, which equals x0 if the number of ’one’s of the codeword y
is odd. If the number of ’one’s of y is even, we do not need to ’correct’ the
disparity. The fascinating result of this new definition is that zero-disparity
i.e. ds(y, x0) = 0, codewords, are possible for n odd.

RDS

i -1 -1 -1 +1 +1 +1 +1 -1 -1

0 0 1 0 0 0 1 0i 1y

x

Figure 8.11: Running digital sum (RDS) versus time. The binary input
symbols yi are translated into the bipolar channel bits xi using a precoder
and a range converter. The transitions occur halfway the bit cells. See
Figure 8.1, at page 199, for the classical definition of the RDS, where
transitions occur at the beginning of each bit cell.

Let N(s) denote the number of words y having ds(y, 1) = s. Then, it is
not difficult to see that N(s) satisfies

N(s) =

(
n− 1

n−1
2

+ b s
2
c

)
. (8.69)

The zero-disparity words are uniquely allocated to the source words. Other
codewords are allocated in pairs of opposite disparity. The choice of a
specific representation is made to minimize the absolute value of the running
digital sum. The words available in both modes can easily be computed.
To that end, let N− and N+ denote the sets whose members y satisfy
ds(y, 1) ≤ 0 and ds(y, 1) ≥ 0, respectively, and let N− and N+ denote the
cardinality of these sets. Then,

N− = 2n−1 (8.70)

www.manaraa.com

236 CHAPTER 8. DC-BALANCED CODES

and

N+ = 2n−1 +

(
n− 1
n−1
2

)
. (8.71)

From (8.70) and (8.71) we infer that, as N− = 2n−1, the designer has no
other choice than taking the words available, whereas, as N+ > 2n−1, the
designer has the freedom to choose words that satisfy certain design criteria
such as low coder/decoder complexity, minimizing maximum runlength, etc.
It can easily be verified that both 10n−1 ∈ N− and 0(n−1)/210(n−1)/2 ∈ N−,
where 0p denotes a string of p ’zero’s. We conclude therefore that the
maximum ’zero’-runlength equals 3(n− 3)/2.

The spectral performance of the new codes has been investigated by
computer simulation. As an example we studied codes of rate 8/9. The
number of codewords with non-negative disparity, N+, equals 326. We
require 256 words, and from the codewords available we chose the words
with the smallest absolute disparity. The maximum runlength is twelve.

Table 8.5: Sum variance of the new code, s2, and the sum variance, s2P ,
of the polarity switch code versus codeword length n.

n s2 s2P
3 1.05 1.67
5 1.73 3.00
7 2.52 4.33
9 3.23 5.66
11 4.07 7.00

We computed the spectrum of the rate 8/9 code, and found that it has 4 dB
less rejection at the low-frequency end than its ’polarity-bit’ counterpart of
the same rate. Also the maximum ’zero’-runlength is much larger, 18, than
that of the new code. Table 8.5 lists the sum variance of the new code,
s2, and the sum variance, s2P , of the polarity switch code versus codeword
length n. The sum variance, s2P , has been computed by invoking (8.64),
page 227. It can be seen that the new codes perform better as they show a
smaller sum variance than that of the conventional scheme.

8.9 Balancing of codewords

The encoding technique discussed in the preceding sections is advantageous
for implementation when the codewords are of medium size. An alternative
and easily implementable encoding technique for zero-disparity codewords
which is capable of handling (very) large blocks was described by Knuth

www.manaraa.com

8.9. BALANCING OF CODEWORDS 237

[206]. A patent was granted in 1982 to Henry describing a similar technique
[131].

The method is based on the idea that there is a simple correspondence
between the set of all m-bit binary source words and the set of all (m+ p)-
bit codewords. The translation can in fact be achieved by selecting a bit
position within the m-bit word which defines two segments, each having one
half of the total block disparity. A zero-disparity block is now generated by
the inversion of all the bits within one segment. The position information
which defines the two segments is encoded in the p-bit prefix. The rate of
the code is m/(m+ p).

Let d(w) be the disparity of the binary source word w = (w1, . . . , wm),
wi ∈ {−1, 1}, or

d(w) =
m∑

i=1

wi. (8.72)

Let dk(w) be the running digital sum of the first k, k ≤ m, bits of w, or

dk(w) =
k∑

i=1

wi, (8.73)

and let w(k) be the word w with its first k bits inverted. For example, if
w = (-1, 1, 1, 1, -1, 1, -1, 1, 1, -1), we have d(w) = 2 and w(4) = (1, -1, -1,
-1, -1, 1, -1, 1, 1, -1). If w is of even length m, and if we let σk(w) stand
for d(w(k)), then the quantity σk(w) is

σk(w) = −
k∑

i=1

wi +
m∑

i=k+1

wi

= −2
k∑

i=1

wi + d(w).

(8.74)

It is immediate that σ0(w) = d(w), (no symbols inverted) and σm(w) =
−d(w) (all symbols inverted). We may as σk+1(w) = σk(w) ∓ 2, conclude
that every word w, m even, can be associated with at least one position
k for which σk(w) = 0, or w(k) is balanced. The value of k is encoded in
a (preferably) zero-disparity word u of length p, p even. The maximum
codeword length of w is, since the prefix has an equal number of ’one’s and
’zero’s, governed by

m ≤
(

p

p/2

)
. (8.75)

If m and p are both odd, we can use a similar construction. Modifications of
the generic scheme are discussed in Knuth [206], Alon et al. [6], Al-Bassam
& Bose [23], and Tallini, Capocelli & Bose [314]. The rate of the above
construction is

R ≈ 1− 1

n
log2 n, n >> 1, (8.76)

www.manaraa.com

238 CHAPTER 8. DC-BALANCED CODES

which shows that the redundancy is a factor of two larger than that of the
full set of zero-disparity codes, see (8.38). Note that if the codewords are
given in NRZI notation, that the zero-disparity codewords can be obtained
by inverting only one symbol in the source word. Error propagation is
therefore limited to one symbol when the p-bit prefix is received correctly,
or two symbols when the p-bit prefix is received erroneously.

The sum variance of code words encoded under the rules of Knuth’s
algorithm was computed by Hollmann & Immink [141]. Let s2Knuth denote
the sum variance then

s2Knuth =
3m+ 2

16
. (8.77)

In Example 8.4, page 226, it has been shown that the sum variance, s20,
of the full set of zero-disparity codewords of length m, m even, equals, see
(8.4),

s20 =
m+ 1

6
.

It shows that the sum variance of the set of codewords generated under the
rules of Knuth’s algorithm is a factor of 9/8 larger than that of the full set
of zero-disparity codewords. A slight improvement of Knuth’s algorithm is
possible by noting that Knuth’s algorithm, as outlined above, is greedy as
it takes the first opportunity for balancing the codeword. In general there is
more than one position, where balancing of the words can take place. This
degree of freedom can be used to pick that codeword with the minimum
sum variance.

www.manaraa.com

8.10. APPENDIX 239

8.10 Appendix

Our objective, in this Appendix, is to derive a closed-form expression of
the sum variance of dc-balanced, bi-mode channel codes. The process of
encoding constituted by the alternate code principle is cyclo-stationary with
period n (see Chapter 3) so that the sum variance of the sequence has to
be established by averaging the sum variance over all n symbol positions
within a codeword.

8.10.1 Computation of the sum variance

Let the value of the running digital sum at the kth position in a codeword
be designated by zk, and suppose also that a codeword, denoted by x(i) =
(x

(i)
1 , . . . , x(i)

n) starts with an initial RDS, denoted by z0, one of theK positive
terminal sum values (the statistics of the codewords starting at a state
associated with a negative sum value can be found by symmetry). The
running digital sum at the kth position in the codeword x(i) is

z
(i)
k = z0 +

k∑

m=1

x(i)
m , 1 ≤ k ≤ n.

The running sum variance at the kth position given z0 is

E{z2k|z0} = E

(
z0 +

k∑

m=1

x(i)
m

)2

= E

z20 +

k∑

m=1

(
x(i)
m

)2
+ 2z0

k∑

m=1

x(i)
m + 2

k−1∑

j1=1

k∑

j2=j1+1

x
(i)
j1 x

(i)
j2

 ,

where the operator E{ } averages over all codewords x(i) that start with
an initial RDS z0. A quite useful property of full codeword subsets is that
the expectations E{x(i)

j1 x
(i)
j2 } and E{x(i)

j1 }, j1 6= j2, are not a function of
the symbol positions j1 and j2. For clerical convenience we use the short-
hand notation E{x(i)

j1 } = µ and E{x(i)
j1 x

(i)
j2 } = r0, 1 ≤ j1, j2 ≤ n, j1 6= j2.

Substitution yields the running sum variance at the kth symbol position

E{z2k|z0} = z20 + k + 2kµz0 + k(k − 1)r0. (8.78)

The sum variance of an admissible sequence that starts with initial RDS z0,
designated by s2K |z0, is found by averaging the running sum variance over
all n symbol positions of the codeword, or

s2K |z0 =
1

n

n∑

k=1

E{z2k|z0} = z20 +
n+ 1

2
+ µ(n+ 1)z0 +

1

3
(n2 − 1)r0.

www.manaraa.com

240 CHAPTER 8. DC-BALANCED CODES

The probability that a codeword starts with initial RDS z0 = 2i − 1,
1 ≤ i ≤ K, is πi so that, by taking the probability into account that a
codeword starts with z0 and averaging over the 2K initial states, the fol-
lowing expression is found for the sum variance s2K :

s2K = E{z20}+
n+ 1

2
+

1

3
(n2 − 1)r0 + 2(n+ 1)µ

K∑

i=1

(2i− 1)πi. (8.79)

The variance of the terminal sum values, E{z20}, is

E{z20} = 2
K∑

i=1

(2i− 1)2πi. (8.80)

The quantity µ can be eliminated by noting the periodicity, i.e. E{z20} =
E{z2n}. Evaluating (8.78) yields

E{z2n|z0} = z20 + n+ 2nµz0 + n(n− 1)r0

and after averaging, where the probability of starting with an initial RDS
z0 is taken into account, we obtain

E{z2n} = E{z20}+ n+ n(n− 1)r0 + 4nµ
K∑

i=1

(2i− 1)πi,

so that, with E{z20} = E{z2n} we find

2µ
K∑

i=1

(2i− 1)πi = −1

2
{1 + (n− 1)r0}.

Substitution in (8.79) yields

s2K = E{z20} −
1

6
(n2 − 1)r0. (8.81)

8.10.2 Computation of the correlation

We next calculate the correlation r0 = E{xj1xj2} of the symbols at the
j1th and j2th symbol position within the same codeword. It is obvious that
E{xj1xj1} = 1. If j1 6= j2, some more work is needed. In that case

E{xj1xj2} = Pr(xj1 = xj2)− Pr(xj1 6= xj2)

= 1− 2Pr(xj1 6= xj2), j1 6= j2.
(8.82)

Suppose a codeword to be an element of subset Si ⊂ S+. The probability
that a symbol at position j1 in the codeword equals ’1’ is

Pr(xj1 = 1|S = Si) =
1

n
(
n

2
+ i).

www.manaraa.com

8.10. APPENDIX 241

The probability that another symbol at position j2 6= j1 within the codeword
equals -1 is

Pr(xj2 = −1|xj1 = 1, S = Si) =
n
2
− i

n− 1
.

Hence

Pr(xj1 6= xj2|S = Si) =
n2 − 4i2

2n(n− 1)

and using (8.82) yields

E{xj1xj2|S = Si} = − 1

n− 1
(1− 4

n
i2).

If we now take into account the probability pi that a codeword is an element
of subset Si ⊂ S+, then for the correlation we find

r0 = E{xj1xj2} =
−1

n− 1

{
1− 4

n

K∑

i=1

i2pi

}
. (8.83)

Combining with (8.81) yields

s2K = 2
K∑

i=1

(2i− 1)2πi +
n+ 1

6

{
1− 4

n

K∑

i=1

i2pi

}
. (8.84)

Define

um =
K∑

i=1

impi, m ∈ {1, 2, 3}. (8.85)

The variance of the terminal sum values equals

E{z20} = 2
K∑

i=1

(2i− 1)2πi,

which after a tedious manipulation of the various results can be written in
the following elegant expression:

E{z20} =
4

3

u3

u1

− 1

3
. (8.86)

After a similar manipulation we find the variance of the complete sequence

s2K =
4

3

u3

u1

+
n− 1

6
− 2

n+ 1

3n
u2. (8.87)

We have now completed the analysis of the classical dc-balanced codes and,
with (8.63), we are in the position to easily evaluate the performance of dc-
free channel codes. The analysis has not been particularly difficult because

www.manaraa.com

242 CHAPTER 8. DC-BALANCED CODES

the detailed structure of the encoder was irrelevant. The sole requirements
can be summarized as follows.

The above analysis rests entirely on the assumption of the dc-balanced,
bi-mode structure of the transition matrix Q. We further assumed that the
expectations are invariant with respect to the location in a codeword, which
is true if full codeword sets are employed.

The analysis of encoders that do not meet the above symmetry con-
ditions is considerably more involved than that the one above presented;
the detailed structure is of paramount concern. Then the performance can
only be evaluated for any given code structure by resorting to numerical
computational procedures, which are provided in Chapter 3.

www.manaraa.com

Chapter 9

Higher-Order Spectral Zeros

9.1 Introduction

The properties of dc-balanced codes whose design rests on a digital sum
constraint have been extensively dealt with in the previous chapters. The
essential results can be summarized as follows. The frequency region with
suppressed components, the notch width, is characterized by the cut-off
frequency. As discussed, the power spectral density function of digital
sum constrained codes is characterized by a parabolic shape in the low-
frequency range from dc to the cut-off frequency. In fact, it is argued
in Chapter 8 that the performance of simple coding schemes is not far
from what is maximally feasible in terms of code redundancy and region
of suppressed low-frequency components. The reader who has studied the
chapters on dc-balanced codes might well assume that little remains to be
added and she/he might wonder whether it is possible to escape from the
strait-jacket expressed by relationship (8.34), page 213, which, in fact, shows
the price-performance ratio of conventional dc-balanced codes. Is it possible
to achieve, for a given redundancy, a larger rejection of the low-frequency
components than is possible with conventional dc-balanced codes?

In this chapter, we present a category of dc-free codes that indeed offers
a larger rejection of low-frequency components. Besides the trivial fact that
they are dc-balanced, an additional property of the codes to be studied
is that the second, and even higher, derivative of the code spectrum also
vanishes at zero frequency (note that the odd derivatives of the spectrum
at zero frequency are zero because the spectrum is an even function of the
frequency). As we shall see in a moment, the imposition of this additional
channel constraint results in a substantial decrease of the power at low
frequencies for a fixed code redundancy as compared with the conventional
designs constructed on the bounded digital sum concept.

Section 9.2 introduces determinate time-domain constraints applied, re-
spectively, to each codeword and to the channel sequence as a whole, aim-

243

www.manaraa.com

244 CHAPTER 9. HIGHER-ORDER SPECTRAL ZEROS

ing at a sequence spectrum which has both zero power and a zero second
derivative at zero frequency. A sequence with these properties is said to be
dc2-balanced. Section 9.3 gives a method to enumerate the number of dc2-
balanced sequences. Thereafter, Section 9.4 furnishes worked examples of
codes whose codewords can be freely concatenated. The power spectral den-
sity function of the dc2-balanced codes will be compared with those of con-
ventional dc-balanced codes. Examples of state-dependent codes are given
that operate with two modes of the source representation. Dc2-balanced
codes are generalized in Section 9.5 to dc-balanced codes having the ad-
ditional property that K low-order (even) derivatives of the code power
spectrum vanish at zero frequency.

Dc-balanced codes with higher-order nulls, as discussed in this chapter,
have error correcting characteristics that make them very suitable for noisy
channels with a partial response transfer function. Usually in this context,
dc-balanced codes are termed matched-spectral-null codes or MSN codes. A
full description of the features of matched-spectral-null codes are outside the
scope of this book and the interested reader is referred to the work by Monti
& Pierobon, Karabed & Siegel [187], and Eleftheriou & Cideciyan [74]. The
papers presented by Roth, Siegel & Vardy [292] and Tallini & Bose [313]
provide a comprehensive overview of various constructions and bounds.

9.2 Preliminaries

Let {xi} denote a stationary channel sequence of bipolar symbols, having
mean zero, with variables x1, . . ., xi ∈ {−1, 1}. The power spectral density
function of the sequence is given by (see Chapter 3)

H(ω) = R(0) + 2
∞∑

i=1

R(i) cos iω, (9.1)

where R(i) = E{xjxj+i}, i = 0,∓1,∓2, . . . is the auto-correlation function
of the sequence. The spectrum H(ω) is an even function of ω, so that in the
neighborhood of ω = 0 it can be approximated with the Taylor expansion

H(ω) = H(0) +
1

2
H(2)(0)ω2 +

1

24
H(4)(0)ω4 (9.2)

A sequence is said to have a Kth order spectral-null if its spectrum H(ω)
has a null at zero frequency, i.e., H(0) = 0, and if its derivatives at zero
frequency H(2i) = 0, i = 1, . . . , K.

In this chapter, we will discuss various constructions of codes that gen-
erate sequences with a Kth order spectral null. We start with the simplest
case, namely where K = 1. Thereafter, we will outline the general case.

www.manaraa.com

9.3. ENUMERATION OF SEQUENCES 245

The running digital sum (RDS), denoted by zi, is defined by (see Sec-
tion 8.2)

zi =
i∑

j=1

xj. (9.3)

As shown in Section 8.2, the power spectral density function vanishes at
ω = 0 if the sequence (zi)

∞
i=1 is bounded, that is, if for all i |{zi}| < Mz,

where Mz is an arbitrary positive constant. We now define the running
digital sum sum (RDSS) yi by

yi =
i∑

j=1

zj. (9.4)

Provided both the RDS and RDSS are bounded, that is, for all i

|{zi}| < Mz and |{yi}| < My,

it can be proved in the same way that then both H(0) = 0 and H(2)(0) = 0.
In the ensuing sections a technique is presented for devising codes that
possess the virtues of bounded RDS and RDSS. These codes will be termed
dc2-balanced codes. The type of code presented here is of fixed length and
it is state-independently decodable. The codewords are selected in such
a way that after concatenation, under certain encoder rules, the channel
sequence will assume a bounded RDS and RDSS. The first problem we will
tackle, to be considered in the next Section, is the counting of the number
of codewords of length n that conform to prescribed y and z constraints.

9.3 Enumeration of sequences

Up till now, the word unbalance referred to a property of a sequence of
arbitrary length. Now we shall use this concept for codewords of predefined
finite length n. First, simple recursion relations are derived to enumerate
the number of codewords of length n having a constraint on both the z
and y disparity. These sequences are termed (z, y) sequences. Later we
will demonstrate how these codewords can be concatenated in such a way
that the concatenated code stream assumes a limited number of RDS and
RDSS values. Specifically, we will enumerate the number of sequences x =
(x1, . . . , xn), xi ∈ {−1, 1}, that meet the conditions

n∑

i=1

xi = dz

n∑

j=1

j∑

i=1

xi = dy,

(9.5)

www.manaraa.com

246 CHAPTER 9. HIGHER-ORDER SPECTRAL ZEROS

where the given constants dz and dy are termed the z and y disparities of
x. By changing the order of summation we obtain

dy =
n∑

i=1

(n+ 1− i)xi = (n+ 1)dz −
n∑

i=1

ixi. (9.6)

If dz = 0 and dy = 0, we simply find that the codeword must satisfy the
conditions

n∑

i=1

xi =
n∑

i=1

ixi = 0. (9.7)

We shall now show that n must be a multiple of four in order to satisfy
the above conditions dz = 0 and dy = 0. In view of xi ∈ {−1, 1}, we may
rewrite (9.6) and obtain

dy = −
(n+dz)/2∑

i=1

pi +
(n−dz)/2∑

i=1

ni + (n+ 1)dz, (9.8)

where pi ∈ {1, . . . , n} and ni ∈ {1, . . . , n} correspond to the positions of the
+1s and -1s, respectively. Obviously,

(n+dz)/2∑

i=1

pi +
(n−dz)/2∑

i=1

ni =
n∑

i=1

i =
1

2
n(n+ 1),

so that, using (9.8), we find

4
(n+dz)/2∑

i=1

pi = n(n+ 1) + 2(n+ 1)dz − 2dy. (9.9)

Thus if dz = 0 and dy = 0, it follows in a straightforward manner from (9.5)
and (9.9) that the codeword length n must be a multiple of four.

The number of codewords that meet given dy and dz conditions can
be computed using the theory of partitions (see Riordan [290]). From the
above, it follows that the number of codewords which comply with the
given restrictions equals the number of subsets {p1, . . . , p(n+dz)/2} of size
(n+dz)/2 of the set {1, 2, . . . , n} satisfying (9.9). The number of codewords,
An(dz, dy), is given by the coefficient cn of ui0tj0 of the polynomial gn(u, t)
defined by

gn(u, t) = (1 + ut)(1 + u2t) . . . (1 + unt) =
∑

i,j

cn(i, j)u
itj, (9.10)

where
i0 = {n(n+ 1) + 2(n+ 1)dz − 2dy}/4,

and
j0 = (n+ dz)/2.

www.manaraa.com

9.4. CODING WITH ZERO-DISPARITY CODEWORDS 247

Both i and j are assumed to be integers, otherwise the number of codewords
is zero.

A useful relation can be derived with the following observation. The
sequence x = (x1, . . . , xn) satisfies the dz and dy constraint if the sequence
w obtained by reversing the order of symbols in x, i.e. w = (xn, . . . , x1),
satisfies the constraints

n∑

i=1

wi = dz,
n∑

j=1

j∑

i=1

wi = −dy + (n+ 1)dz.

By definition, the number of sequences w that meet the two conditions
equals An(dz, (n+ 1)dz − dy). Since the number of sequences w equals the
number of sequences x with the given constraints, we obtain

An(dz, dy) = An(dz, (n+ 1)dz − dy). (9.11)

Since gn(u, t) = gn−1(u, t)(1 + unt) the coefficients cn(i, j) can be found
recursively:

cm(i, j) = cm−1(i, j) + cm−1(i−m, j − 1), (9.12)

with initial conditions c0(0, 0) = 1, otherwise c0(i, j) = 0. Alternative enu-
meration schemes have been developed by Xin & Fair [352].

9.4 Coding with zero-disparity codewords

A natural way to construct a code that generates long sequences satisfying
the z and y constraints is to employ a set of codewords of fixed length n that
can be concatenated without a coding rule, that is, to employ a memoryless
encoder. In this elementary case, the codewords start and terminate with
both zero RDS and RDSS and consequently the codewords should have
both zero z and y disparities. In the sequel, the shorthand notation zero-
disparity codeword is used if both the z and y disparities of that codeword
are zero. From (9.7), we find in this particular case that the codeword
moments, designated by uk, meet the following conditions:

uk =
n∑

i=1

ikxi = 0, k ∈ {0, 1}. (9.13)

Invoking recursion relations (9.12) we calculated the number M = An(0, 0)
= cn(n(n+1)/4, n/2), n = 4, 8, . . . , 36 of zero-disparity codewords (we have
already pointed out that the set of zero-disparity codewords is empty if n
is not a multiple of 4). Results of computations are listed in Table 9.1.

www.manaraa.com

248 CHAPTER 9. HIGHER-ORDER SPECTRAL ZEROS

Table 9.1: Number of zero-disparity codewords and rate versus codeword
length n.

n M R
4 2 0.250
8 8 0.375
12 58 0.488
16 526 0.565
20 5448 0.621
24 61108 0.662
28 723354 0.695
32 8908546 0.722
36 113093022 0.743

Table 9.1 also presents the code rate R, which is defined by

R =
1

n
log2M. (9.14)

It can be noticed that the code rate, even for comparatively large codeword
length n, is quite poor. It was shown by Saxena & Robinson [294] and Tallini
& Bose [313] that for large n the number of zero-disparity codewords can
be approximated by

M ≈ 4
√
3

π
.
2n

n2
.

This asymptotic formula implies the following approximation for the rate
R:

R ≈ 1− 1

n
{2 log2 n− 1.141}, n >> 1. (9.15)

Numerical results are given in Table9.2.

Table 9.2: Rate (approximated) of zero-disparity codewords versus code-
word length n.

n R n R
8 0.3925 256 0.9420
16 0.5713 512 0.9671
32 0.7231 1024 0.9816
64 0.8303 2048 0.9898
128 0.8995 4096 0.9944

www.manaraa.com

9.4. CODING WITH ZERO-DISPARITY CODEWORDS 249

9.4.1 Spectra of zero-disparity codewords

Let us now examine the power spectral density function of codes based on
fixed-length zero-disparity codewords. Let x(k) = (x

(k)
1 , . . . , x(k)

n), denote
the kth element of the set S of zero-disparity codewords in {−1, 1}. If, as
usual, it is assumed that the codewords are equiprobable and independent,
then the auto-correlation function of the concatenated channel stream, when
transmitted serially, is given by (see Chapter 3)

R(k) =
1

n

n−k∑

i=1

E{xixi+k}, 0 ≤ k ≤ n− 1,

R(0) = 1,

R(k) = 0, k ≥ n,

where

E{xixj} =
1

M

M−1∑

k=0

x
(k)
i x

(k)
j , 1 ≤ i, j ≤ n. (9.16)

Example 9.1 The simplest example is the code constituted by codewords of
length n = 4. We can verify that the two codewords are ’−++−’ and ’+−−+’
(the characters ’+’ and ’−’ are used to represent a bipolar symbol with value +1
and −1, respectively). The code rate is R = 1/4. The auto-correlation function
of this channel code is R(0) = 1, R(1) = −1/4, R(2) = −1/2, R(3) = 1/4, and
R(i) = 0, i ≥ 4. The power spectral density function H(ω) of this channel code
is readily established with (9.1):

H(ω) = 1 + 2{−1

4
cosω − 1

2
cos 2ω +

1

4
cos 3ω}

= 4 sin2
ω

2
sin2 ω.

Without much difficulty we may verify that indeed H(0) = H(2)(0) = 0.

Although the execution of expression (9.16) is straightforward, it has
the disadvantage that, due to the exponential growth of the number of
codewords, the arithmetical effort becomes prohibitive for large codeword
lengths. This problem is being tackled by exploiting the preceding enumer-
ation method, which, by contrast, has the virtue that the auto-correlation
function can be computed with a polynomially growing computational work-
load. To that end, let i0 and i1, i0 6= i1 be two symbol positions in a
codeword. From (9.16), we derive for fixed i0 and i1, using xi ∈ {−1, 1} :

E{xi0xi1} =
1

M
{N(xi0 = xi1)−N(xi0 6= xi1)}, i0 6= i1,

www.manaraa.com

250 CHAPTER 9. HIGHER-ORDER SPECTRAL ZEROS

where N(.) is the number of codewords satisfying (.). For reasons of sym-
metry:

E{xi0xi1} =
2

M
N(xi0 = xi1)− 1

=
4

M
N(xi0 = xi1 = 1)− 1.

(9.17)

Let xi0 = xi1 = 1, then from (9.13)

n∑

i=1,i 6=i0,i1

xi = −2

and
n∑

i=1,i6=i0,i1

ixi = −(i0 + i1). (9.18)

The number of codewords in S that meet the above conditions can again
be found with the enumeration method described in Section 9.3. The num-
ber of sequences N(xi0 = xi1 = 1) in the codeword set S that satisfy (9.18)
is given by the coefficient of uivj, where i = n(n+1)/4−i0−i1, j = (n−4)/2,
of the polynomial

hn(u, t) =
gn(u, t)

(1 + ui0t)(1 + ui1t)
. (9.19)

With a small modification of the recursion relations (9.12), we obtain N(xi0

= xi1 = 1). Using (9.1), (9.16), (9.17), and relation (9.19) we calculated
the power spectral density function of zero-disparity codeword based codes.
The outcomes of the computations are plotted in Figure 9.1.

As with standard dc-balanced codes, we can define the cut-off frequency
of dc2-balanced codes. A computation of the cut-off frequency of dc-balanced
and dc2-balanced zero-disparity codes for a fixed rate, leads to the conclu-
sion that the cut-off frequency of conventional dc-balanced codes exceeds
that of dc2-balanced codes by a factor of 2.5. It should be borne in mind,
however, that below the cut-off frequency, the spectrum of dc2-balanced
codes decreases faster with decreasing frequency than those of dc-balanced
codes. We noticed when comparing the spectra of dc2- and dc-balanced
codes that for fixed redundancy a cross-over is found at approximately -
20 dB. Accordingly, we infer that dc2-balanced codes are favorable if a
rejection of low-frequency components better than -20 dB is required. A
few remarks regarding the construction of dc2-balanced zero-disparity codes
are in order. As we may observe in Table 9.1, the rate of dc2-balanced block
codes is quite poor for relatively short codewords. In order to increase the
rate, we must seek resort to the usage of (very) long codewords, where di-
rect look-up is impractical. Using enumeration techniques, as discussed in
Chapter 6, it is straightforward to encode an arbitrary source word into a
dc2-balanced zero-disparity codeword.

www.manaraa.com

9.5. STATE-DEPENDENT ENCODING 251

-50

-40

-30

-20

-10

0

10

0.0001 0.001 0.01 0.1
-50

-40

-30

-20

-10

0

10

0.0001 0.001 0.01 0.1
-50

-40

-30

-20

-10

0

10

0.0001 0.001 0.01 0.1
-50

-40

-30

-20

-10

0

10

0.0001 0.001 0.01 0.1

n=20

n=24
n=12

n=16

Frequency f

P
S

D
(f

)

Figure 9.1: Power spectral density function, H(ω), of zero-disparity dc2-
balanced codes with the codeword length n = 12, 16, and 20, as a param-
eter.

Unfortunately, the number of states (weights) increases strongly, (n3), with
increasing codeword length n, and enumeration is therefore not a very at-
tractive option. Siegel & Vardy [301] disclosed an ”encoding method and
apparatus” for constructing an asymptotically optimal coding scheme for
second-order dc-free constrained channels. Roth et al. [292] describe a con-
struction, where by inverting a very limited number, ≈ 3 log2 n, of source
symbols, a dc2-balanced zero-disparity codeword can be obtained. The mod-
ifications of the source word are sent encoded as a zero-disparity prefix word
to the receiver, which can then undo the modifications made.

9.5 State-dependent encoding

In the case of state-independent (memoryless) encoding, the sequence is
encoded without information of the past. This format implies a unique
one-to-one mapping of the source words and their channel representations.
A larger rate with given codeword length is feasible when codewords are
allowed to start (and end) in a state that is a member of a set of predefined
states, commonly referred to as principal states. The existence of such a set
of principal states can be ascertained with a routine developed by Franaszek
(see also Chapter 5).

During experiments with this procedure, we found that the following

www.manaraa.com

252 CHAPTER 9. HIGHER-ORDER SPECTRAL ZEROS

choice of codeword subsets is quite satisfactory. It is assumed that the
encoder operates on the basic principle of the bi-mode alternate coding
technique as described by Cattermole (see Chapter 8). All codewords are
chosen in such a way that dz = 0. Codewords with positive and negative
dy are used in two modes, and codewords with zero dy may serve in both
modes. The polarity of a codeword is to be chosen by the encoder in such
a way that at the end of each new codeword the RDSS is as close to zero as
possible. The number of RDSS values at the end of a codeword is twice the
number of codeword subsets with different positive dy values. The RDSS at
the end of the codewords will assume the values ∓1, ∓3, . . . , ∓(r − 1) by
initializing the RDSS counter with the disparity 1. The recursion relations
can be used to calculate the rate of the bi-mode code as a function of the
number of subsets and the length of the codeword. Table 9.3 lists the
outcomes when r encoder states are used. Note the improvement in code
rate with respect to those of the memoryless block codes listed in Table 9.1.
The performance of two rate R = 1/2 codes will be assessed in the following
examples.

Table 9.3: Code rate R of dc2-balanced codes with codeword length n
and r encoder states.

r = 2 4 6 8 10
n = 4 .396 .500 – – –

8 .488 .557 .594 .625 .641
12 .568 .616 .648 .672 .689
16 .627 .663 .688 .707 .722
20 .670 .700 .720 .736 .748

Example 9.2 An attractive and conceptually simple code shown in Table 9.3
has the parameters n = 4, r = 4, and R = 1/2. Table 9.4 shows the codebook
of this simple code. The codewords contain equal numbers of +1s and -1s which
facilitates the implementation of the encoder as it suffices to monitor the RDSS.

Table 9.4: Codebook of four-state R = 1/2 code.

i h, g(σ1,βi) h, g(σ2,βi) h, g(σ3,βi) h, g(σ4,βi)

0 1001, σ1 1001, σ2 1001, σ3 1001, σ4
1 0110, σ1 0110, σ2 0110, σ3 0110, σ4
2 1010, σ2 1010, σ3 0101, σ2 0101, σ3
3 1100, σ3 1100, σ4 0011, σ1 0011, σ2

www.manaraa.com

9.6. HIGHER-ORDER DC-CONSTRAINED CODES 253

The codewords should be chosen from the table in such a way that after trans-

mission of the new codeword the RDSS is as close to zero as possible. The RDSS

at the end of each transmitted codeword assumes four values, namely ∓1 and

∓3.

Example 9.3 A rate R = 1/2, three-state encoder which, by virtue of the
reduced RDSS variation, slightly (approximately 2 dB) improves upon the low-
frequency content of the four-state code studied in Example 9.2 was published
by Monti et al. [252].

Table 9.5: Codebook of three-state R = 1/2 code.

i h, g(σ1,βi) h, g(σ2,βi) h, g(σ3,βi)

0 0110, σ1 0110, σ2 0110, σ3
1 1001, σ1 1001, σ2 1001, σ3
2 1010, σ2 1010, σ3 0011, σ1
3 1100, σ3 0101, σ1 0101, σ2

The complete code specification, in terms of the output and state-transition func-

tions, is given in Table 9.5. The three encoder states are denoted by σi, i = 1, 2, 3.

The codewords have been allotted in such a way that decoding turns out to be

state independent, while the assignment with the source words is arbitrary. The

reader may easily verify that in the above scheme the same codewords are used

as in the code described by Example 9.2. The more judicious choice of the code

structure, however, accounts for the improved performance at the low-frequency

end.

9.6 Higher-order dc-constrained codes

The concept of dc2-constrained sequences established in the preceding sec-
tion can be generalized to include higher-order nulls at the zero frequency
[160]. Define the following K + 1 moments of a codeword:

uk =
n∑

i=1

ikxi, k ∈ {0, 1, . . . , K}. (9.20)

A codeword is defined as being of Kth order zero-disparity if

uk = 0, k ∈ {0, 1, . . . , K}. (9.21)

The set of all Kth order zero-disparity codewords of length n is called the
Kth order disparity code of length n. It can easily be verified that the
first 2K + 1 derivatives of the power spectral density function of a Kth

www.manaraa.com

254 CHAPTER 9. HIGHER-ORDER SPECTRAL ZEROS

order zero-disparity code vanish at ω = 0. There is an interesting analogy
between this relationship and its counterpart in signal theory. It is well
known that if the first K + 1 moments m0, m1, . . ., mK of a function are
zero, then also the first K +1 derivatives of its Fourier transform vanish at
zero frequency [270]. In that case, it can be verified in a straightforward
manner that the first 2K + 1 derivatives of its power spectrum also vanish
at ω = 0.

In the simple case K = 0, we find that the length n of the codewords is
even and that the codewords obviously have an equal number of ∓ 1s. The
number of such codewords M is given by the binomial coefficient

M =

(
n
n
2

)
. (9.22)

The properties of this category of dc-balanced block code are treated in
Chapter 8. If K = 1, it was shown in the previous section that each code-
word corresponds to a partition of the set {1, . . . , n} into two disjoint subsets
of size n/2, such that the sum of the elements in both sets equals n(n+1)/4.

Let x be a codeword and let I be the set of indices l for which xl = 1
and let J be the set of indices l for which xl = −1. Then from the fact that
x is a first-order zero-disparity codeword, it follows that

∑

i∈I
i =

∑

j∈J
j =

1

2

n∑

l=1

l =
n(n+ 1)

4
. (9.23)

Hence I and J divide the set {1, . . . , n} into two disjoint subsets with the
required properties. These two sets correspond to the position of the ”1”s
and ”-1”s, respectively, in the codewords. Conversely, each such partition
corresponds to a codeword. Hence, the number of codewords equals the
number of ways to partition the set {1, 2, . . . , n} into two disjoint subsets
of size n/2, such that the sum of the elements in both sets equals n(n+ 1)/4.
Using generating functions, (see Section 5.9) the number of codewords with
u0 = u1 = 0 can be expressed as the coefficient cn(i, j) of u

itj, i = n(n+1)/4,
j = n/2 in the polynomial gn(u, t) defined by

gn(u, t) = (1 + ut)(1 + u2t) . . . (1 + unt). (9.24)

It is assumed that n is a multiple of four.
In general, it can be shown [160] that the number of codewords of a Kth

order zero-disparity code is the coefficient of

vi00 v
i1
1 . . . viKK

of the polynomial Gn(v0, v1, . . . , vK) defined by

Gn(v0, v1, . . . , vK) =
n∏

i=1

(1 + v0v
i
1 . . . v

iK

K), (9.25)

www.manaraa.com

9.6. HIGHER-ORDER DC-CONSTRAINED CODES 255

where

im =
1

2

n∑

i=1

im.

Note that for K = 1, (9.25) reduces to (9.24). Table 9.6 lists the number
of Kth order zero-disparity codewords versus codeword length n and the
order K for K = 1, 2, 3, and 4.

Table 9.6: Number of Kth order zero-disparity codewords versus code-
word length n and K.

n K = 1 K = 2 K = 3 K = 4
4 2 0 0 0
8 8 2 0 0
12 58 2 0 0
16 526 14 2 0
20 5448 48 0 0
24 61108 592 16 0
28 723354 2886 0 0
32 8908546 34888 78 2

-50

-40

-30

-20

-10

0

10

0.01 0.1
f

-50

-40

-30

-20

-10

0

10

0.01 0.1
f

-50

-40

-30

-20

-10

0

10

0.001 0.01 0.5
f

K=3

K=1

K=2

H
(f

)
(d

B
)

Frequency f

Figure 9.2: Power density functions of memoryless codes with K = 0, 1,
and 2 with rate 1/2. For increasing values of the order K, we obtain a
more severe suppression of the power at very low frequencies.

www.manaraa.com

256 CHAPTER 9. HIGHER-ORDER SPECTRAL ZEROS

The spectra of codes based on Kth order zero-disparity codewords for
K = 0, 1, and 2 whose codeword lengths are chosen, see Table 9.6, in
such a way that the rate R of these codes is approximately 1/2, are illus-
trated in Figure 9.2. It can be seen in the diagram that for increasing values
of the order K, we obtain a more severe attenuation of the power at very
low frequencies. Skachek et al. described an efficient encoding algorithm
for third-order spectral-null codes.

Asymptotic behavior in n of the number of Kth order zero-disparity code-
words was determined by Freiman & Litsyn [102]. They showed that, for
sufficiently large n, the rate R of the Kth order zero-disparity codeword
sets can be approximated by

R ≈ 1− (K + 1)2

2n
log2 n, n >> 1. (9.26)

Note that the above relationship coincides with those of K = 0, regular
zero-disparity codewords, see (8.38) at page 214, and K = 1, DC2-balanced
codewords, see (9.15), page 248.

www.manaraa.com

Chapter 10

Guided Scrambling

10.1 Introduction

In both coding practice and the literature, code implementations have been
concentrated on codes whose codeword length is relatively small. Examples
are the rate 1/2, rate 2/3 RLL codes, byte-oriented dc-free codes of rate
8/10 or 8/9 (see Chapter 8), and byte-oriented RLL codes such as EFM
and EFMPlus (see Chapter 11). The hard disk drive (HDD) industry has
been moving towards detection schemes that can function well at very high
code rate such as 16/17, 24/25, and 32/33. The construction of high-rate
codes is far from obvious, as table look-up for encoding and decoding is an
engineering impracticality. In much of the previous work, where look-up
tables are used, the difficulty of looking-up has been attacked by a ”divide-
and-conquer” approach. Alternatively, the high-rate (0, k) codes discussed
in Section 6.3.4, page 150, which use enumerative coding schemes, offer a
viable solution when the codeword length is very long.

Coding methods that do not use table look-up or enumeration are of spe-
cific practical interest. As examples we mention two methods, described in
Chapter 8, which are good candidates for high-rate dc-free codes, namely the
polarity-bit code by Bowers and the dc-balancing method by Knuth. Both
methods exploit the idea that the correspondence between source words and
the codewords should be as simple as possible. Usually this means that the
encoded bits are as much as possible equal to the source bits, or inverted
versions of it. Clearly, equality or inversion are the simplest operations pos-
sible. As discussed in Chapter 8, a drawback of said methods is that the
performance, in terms of suppression of low-frequency components, is far
from what could be obtained according to the tenets of information theory.
Up till now, attempts to improve the performance of such codes failed as
”good” codes require large look-up tables.

The publications by Fair et al. [76, 77, 78] and Immink & Patrovics [166]
on ”guided scrambling” stimulated new research in this area. Guided scram-

257

www.manaraa.com

258 CHAPTER 10. GUIDED SCRAMBLING

bling is a member of a larger class of related coding schemes called multi-
mode code. In multi-mode codes, each source word can be represented by
a member of a selection set consisting of L codewords. The encoder eval-
uates the ”quality” of each codeword in the selection set, and transmits
that codeword that ”best” matches the quality criterion, metric, at hand.
At first sight, this does not look as a very novel approach, as it has been
’business-as-usual’ since the advent of constrained codes. The difference,
however, with the classical approach as discussed in the previous chapters,
is that the members of the selection sets are not judiciously selected and
stored in memory. They are, in contrast, randomly picked. The basic idea
is that, provided the selection set is sufficiently large, we will find, with high
probability, an adequate codeword fulfilling the constraints at hand. The
advantages of this approach are evident: at the encoder site we only need
a) a simple mechanism for translating source words into a selection set of
”random” codewords and b) a mechanism for evaluating the ”quality” of
the candidate words. The stumbling block of conventional large codes, the
huge look-up table, is avoided, and replaced by a simple randomization al-
gorithm. At the receiver’s site we only need a de-randomization procedure,
which, as we will see in the next section, can often be embodied by a sim-
ple sliding-block decoder so that error propagation is limited. Clearly, the
search and computational load for evaluating the metric at the encoder’s
site puts a practical limit to the size of the selection set. It should be
noted that the decoder does not search or evaluate, so that this scheme is of
particular interest to broadcasting or optical recording on mass-replicated
discs. Embellishments for reducing the computational load, such as a non-
exhaustive search of the selection set, can easily be added to the generic
scheme. In the context of dc-free codes, Copeland & Tezcan [64] showed
that a significant saving in computational load can be gained by employing
a Fast (Walsh-)Hadamard Transform. The Hadamard transform generates
the possible disparity values of all n candidate codewords in the selection
set in log n instead of n steps (see Section 10.4). The two key ingredients
of the encoder mentioned above need to be chosen judiciously:

1. the random mapping between the source words and their correspond-
ing selection sets, and

2. the metric used to select the ”best” word from the selection set.

The spectral (or other) performance of the code greatly depends on both
issues. We will in this chapter discuss results of the application of guided
scrambling to both RLL and dc-free codes.

Provided the selection size, L, is large enough and that the selection set
contains sufficiently different codewords, multi-mode codes can be used to
almost satisfy any channel constraint. It is, however, not possible to fully

www.manaraa.com

10.2. GUIDED SCRAMBLING BASICS 259

guarantee the specified constraints. There is always a (hopefully small)
probability that the specified constraints will be violated. Codes that do
not strictly guarantee the fulfillment of specified constraints will be called
weakly constrained codes. Weakly constrained codes produce sequences that
violate the specified constraints with probability p. The fact that the given
rules are not observed is not thought to be very devastating as also the
recording channel is not free of errors. Clearly, if the norm gets looser, the
channel capacity will increase, and this will make it, hopefully, easier to
construct codes.

The outline of this chapter is as follows. We start, in Section 10.2, with
a general outline of guided scrambling. Thereafter, In Section 10.3, we will
focus on the spectral characteristics of dc-balanced codes that are generated
under the rules of the guided scrambling algorithm. In Section 10.4, we
will present a possible implementation for efficiently evaluating a selection
set. Thereafter, in Section 10.5, we compare the performances of guided
scrambling and the polarity bit scheme using look-ahead.

In Section 10.6, we study the performance of weakly (0, k) constrained
codes. We will compute the probability, P , that the encoder fails to transmit
a codeword that complies with the specified k constraint as a function of
various coding parameters such as redundancy and size of the selection
set. It will be shown that, under mild conditions, we have that ln(P) is
proportional to −2(C−R)n, so that, as long as R < C we can, in principle,
decrease the encoder failure rate by choosing the codeword length (and the
selection set) sufficiently large.

10.2 Guided scrambling basics

A basic element of multi-mode codes is the definition of a one-to-L invertible
mapping between the source word x and its selection set. The invertible
mapping should be designed in such a way that the selection sets contain
sufficiently ’random’ codewords, and that error propagation at the decoding
site is limited.

Examples of good mappings that have the above desirable attributes are
the guided scrambling algorithm presented by Fair et al. [76], the dc-free
coset codes of Deng & Herro [70], the multiple scramblers of Kanota &
Nagai [185], and the scrambling using a linear error correcting code, such
as the Reed-Solomon code, by Denissen & Tolhuizen [71], the Hadamard
Transform by Copeland & Tezcan [64], and Kunisa et al. [212-213]. In our
context, a mapping is considered to be “good” if, indeed, the selection sets
contain sufficiently distinct codewords.

www.manaraa.com

260 CHAPTER 10. GUIDED SCRAMBLING

10.2.1 Guided scrambling

Scrambling techniques have traditionally been employed in digital transmis-
sion and recording systems to ’randomize’ the source words. Scrambling is
a very simple operation: it is usually accomplished by adding (modulo-2)
a known pseudo-random sequence to the source sequence. The pseudo-
random sequence is known to receiver and sender. The pseudo-random
sequence can be stored in memory, or it can, as is usually done, generated
on-the-fly with a feedback shift register. There are many good techniques
for translating a user word into a selection set of ’random’ codewords. Kan-
ota & Nagai [185] use a plurality of scramblers each of which scrambles
the input data. The scrambler that generates the ”best” output is chosen
and identified in the message sent. A disadvantage of this method is error
propagation since the entire message will be received in error if the data
identifying the scrambler used is erroneously received. The next method,
using a self-synchronizing scrambler, solves this problem.

With judicially chosen feedback taps, the feedback shift register will gen-
erate a maximal-length sequence called anm-sequence. The source stream is
simply recovered at the receiver’s site (this operation is called de-scrambling)
by adding the same pseudo-random sequence to the received message. A
scrambler using a feedback shift register is often termed self-synchronizing.
Basic theory of self-synchronizing scramblers can be found in [218]. The
term ’self synchronizing’ stems from the fact that no frame synchronization
or resetting of the scrambler and descrambler (at the receiver’s site) is re-
quired for proper operation (see later for a description of the descrambler).
Note that frame synchronization is normally required when scrambling is
done by adding a known, random, sequence.

A self-synchronizing scrambler comprises a (binary) shift register of
length s, whose input consists of the addition of sw, sw ≤ s, delayed versions
of the output symbol. A diagram of such a self-synchronizing scrambler is
shown in Figure 10.1. All additions are assumed to be modulo-2 additions,
and the addition operation is denoted by the symbol ⊕. Commonly, the
scrambler polynomial is used to denote which delayed versions of the output
are fed back to the shift register input. Let the scrambler polynomial be
given by

xs +
s∑

k=1

akx
s−k,

where ak ∈ {0, 1}, k = 1, . . . , s, denote the scrambler coefficients. If ak = 1,
the k cycles delayed version of the output is fed back to the input. Let
A be the set of integers k for which ak = 1. The cardinality of A, i.e.,
the number of feedback taps, is denoted by sw, and is called the weight of
the scrambler polynomial. The sequence that is generated by the scrambler
is periodic. For a given length, s, of the shift register, the period can be

www.manaraa.com

10.2. GUIDED SCRAMBLING BASICS 261

at most 2s − 1 [112]. A sequence with this maximum period is called a
maximum-length sequence or pseudo random sequence.

T T T

as=1 a1as-1 a2

+ + ++

+ +
b c

i i

Figure 10.1: Example of self-synchronizing scrambler. At each instant
i, a (binary) symbol bi is forwarded to the scrambler, and an output,
scrambled, symbol ci is delivered.

In the first step, called augmenting, the source word x = (x1, . . . , xm) is
preceded by all the possible binary sequences of length r to produce the
intermediate set Bx = {b1, . . . , bL}. Hence:

b1 = (0, 0, . . . , 0, 0, x1, . . . , xm),
b2 = (0, 0, . . . , 0, 1, x1, . . . , xm),
. . .
bL = (1, 1, . . . , 1, 1, x1, . . . , xm).

A diagram of the above augmenting process is shown in Figure 10.2. The
selection set Cx = {c1, . . . , cL} is obtained by scrambling all vectors in the
intermediate set Bx. The scrambler translates each vector b = (b1, . . . , bn) ∈
Bx into c = (c1, . . . , cn) = f(b) ∈ Cx using the recursion

ci = bi ⊕
∑

k∈A
ci−k. (10.1)

The “best” codeword in Cx is selected for transmission. At the receiver’s
site, the inverse operation b = f−1(c) is

bi = ci ⊕
∑

k∈A
ci−k.

The above operation can been seen in Figure 10.3.

www.manaraa.com

262 CHAPTER 10. GUIDED SCRAMBLING

x

Augmenting with r bits

Scrambling

000 x
001 x

111 x

Selection set of 2 words
r

Figure 10.2: Process of augmenting using guided scrambling. A set of
size 2r (m + r)-bit words is constructed by augmenting the m-bit input
word with all possible r-bit words. Each (m + r)-bit word is scrambled,
thus generating a selection set of 2r ’randomized’ words.

T T T

as=1 a1as-1 a2

+ + ++ +
i ic b

Figure 10.3: Descrambler. The output symbol bi is simply found by the
addition of delayed versions of the input symbol ci.

Clearly the above operation does not require any synchronization of the
scrambler or descrambler. The source word is simply found by deleting the
first r bits. Note that the descrambling operation is essentially a sliding-
block decoder of length s, where sw + 1 modulo-2 additions are made for
retrieving a source symbol. As a consequence, if a single channel error has
been made in the received word, then, after descrambling, sw+1 errors will
be propagated in the descrambled word. The weight sw of the scrambler
polynomial (the number of taps) is therefore a key parameter for determin-
ing the error propagation. Good scrambler polynomials with a minimum
weight have been tabulated, see, for example, Peterson & Weldon [282].

www.manaraa.com

10.3. ANALYSIS OF MULTI-MODE DC-FREE CODES 263

10.3 Analysis of multi-mode dc-free codes

In this section, we will present results of the application of guided scrambling
to generate dc-balanced sequences.

As discussed above, in the guided scrambling algorithm, translation of
source words into 2r random-like channel representations is done in a fairly
simple way. This basic algorithm is, however, prone to worst case situations
since there is a probability that consecutive source words have representa-
tion sets whose members all have the same polarity of the disparity. In this
vexatious situation, the running digital sum RDS cannot be controlled, and
long-term low-frequency components can build up. This flaw can be solved
by a construction where each selection set consists of pairs of words of op-
posite disparity. As a result, there is always a codeword in the selection set
that can control the RDS.

A simple method embodying this idea combines the features of guided
scrambling and the polarity bit code. The improved algorithm, using r ≥ 2
redundant bits, is executed in six steps. In Steps 1, 2, and 5 the original
guided scrambling principle is executed while Steps 3 and 4 embody the
polarity bit code.

1. The source word x is preceded by all the possible binary sequences
of length (r − 1) to produce the L′ = 2r−1 elements of the set Bx =
{b1, . . . , bL′}. Hence:

b1 = (0, 0, . . . , 0, 0, x1, . . . , xm),
b2 = (0, 0, . . . , 0, 1, x1, . . . , xm),
. . .
bL′ = (1, 1, . . . , 1, 1, x1, . . . , xm).

2. The selection set B′
x = {b′1, . . . , b′L′} is obtained by scrambling all

vectors in Bx.

3. By preceding the vectors in B′
x with both a ’one’ and a ’zero’, we

obtain the set B′′
x, with L = 2r elements.

4. The selection set Cx is obtained by scrambling (precoding) the vectors
in B′′

x using the scrambler with polynomial x + 1. This embodies the
polarity bit principle.

5. The “best” codeword in Cx is selected.

6. At the receiver end, the codeword is first descrambled using the x+1
polynomial, then after removing the first bit, it is descrambled. The
original source word x is eventually reconstituted by removing the
first (r − 1) bits.

www.manaraa.com

264 CHAPTER 10. GUIDED SCRAMBLING

All simulations and analyses discussed below assume the above structure,
where the selection set consists of pairs of words of opposite disparity. A
precise mathematical analysis of the performance of multi-mode codes is,
considering its complexity, out of the question. We can either rely on com-
puter simulation to facilitate an understanding of the operation of the coding
system or try to define a simple mathematical model, which embraces the
essential characteristics of the code and is also analytically tractable. We
followed both approaches, and we commence by describing the underlying
mathematical model.

10.3.1 The random drawing model

The key characteristic of a multi-mode code is that each source word can
be represented by a codeword taken from a set containing L ”random” al-
ternatives. As the precise structure of the encoder is extremely difficult
to analyze, it is assumed, in our mathematical model, that for each source
block x the channel set Cx is obtained by randomly drawing L/2 n-bit words
plus their L/2 complementary n-bit words. The precise structure of the
scrambler is ignored in our model. The “best” word in the set, according to
the minimum running digital sum (MRDS) criterion, is transmitted. The
MRDS criterion ensures that the state space of the encoder, that is, the
number of possible word-end running digital sum (WRDS) values the en-
coded sequence may take, is finite. However, if the codewords are relatively
long, the number of states and the resulting transition matrix are still too
large for a simple mathematical analysis. We therefore truncated the state
space by omitting those states that do not contribute significantly to the
sum variance.

10.3.2 Transition probabilities of the finite-state ma-
chine

The implemented encoder schemes can be simply treated in terms of Markov
models. The set of values that WRDS take prior to transmission of a code-
word defines a set of states of a finite-state machine. The shorthand nota-
tion Z(i) is used to denote both the WRDS at the start of the ith codeword
and to refer to the encoder state itself. We commence our analysis with a
computation of the state transition probabilities.

Assume the ith codeword starts with RDS Z(i) = Z ′. Then the multi-
mode code can be cast into a Markov chain model whose state transition
probabilities matrix, T , is given by

T [Z ′, Z ′′] = P
(
Z(i+1) = Z ′′|Z(i) = Z ′) .

We make the following remarks concerning the state transition matrix:

www.manaraa.com

10.3. ANALYSIS OF MULTI-MODE DC-FREE CODES 265

1. For the sake of simplicity, only codes using codewords of even length
are considered.

2. It is assumed that at the start of the transmission WRDS is set to +1.
As a result, since the codeword length is even, Z(i) ∈ {±1,±3, . . .}.

3. For reasons of symmetry, only the probabilities for Z ′ > 0 need to be
calculated.

4. The state space was reduced by considering only those states that can
be reached from the Z ′ = 1, or the Z ′ = −1, state with probability
greater than ε, where ε is chosen suitably small, say 10−6. Other values
of ε have been tried without, however, causing significant differences
in the results obtained. The remaining states will be termed principal
states.

We now introduce several notations. If WRDS is positive, then, accord-
ing to the simple MRDS criterion, the next codeword will be of zero or
negative disparity. Therefore, assuming that the encoder occupies state Z ′,
the set of possible next states is ZZ′ = {Z ′, Z ′ − 2, . . . , Z ′ − n}. Let p(d)
denote the probability of a codeword pair having disparity +d and −d. The
probability of the next-state candidate in a draw being Z∗ is

pZ∗ =

{
p(|Z∗ − Z ′|) if Z∗ ∈ ZZ′ ;
0 otherwise.

(10.2)

The next-state candidate in the jth draw is denoted by Z∗
j , j = 1, . . . , L′.

According to the MRDS criterion, if the next state is Z ′′, then |Z∗
j | ≥ |Z ′′|

for all j. The probability that during a draw the next-state candidate is
“worse” than Z ′′, denoted by qZ′′ , is given by

qZ′′ =
∑

|Z∗|>|Z′′|,Z∗∈ZZ′

pZ∗ .

Now, the expression for the transition matrix T is given by

T [Z ′, Z ′′] =
pZ′′

pZ′′ + p−Z′′

[
(pZ′′ + p−Z′′ + qZ′′)L

′ − qL
′

Z′′
]
. (10.3)

The transition probabilities for each pair of WRDS states can be numerically
determined by invoking (10.3). In order to make the analysis more tractable,
those states are removed that can be reached from the Z ′ = 1, or the
Z ′ = −1, state with probability less than ε. The remaining set of states,
the principal states, denoted by SK = {−K,−K + 2, . . . , K − 2, K}, and
the truncated transition probability matrix T with elements ti,j, i, j ∈ SK

can easily be found. Thereafter, the vector of the stationary probabilities,
π with elements πi, i ∈ SK , is found by solving πT = π. The calculation
of the variance of the digital sum at the start of the codewords is now
straightforward. The computation of the sum variance within the codewords
is quite involved and therefore omitted.

www.manaraa.com

266 CHAPTER 10. GUIDED SCRAMBLING

10.3.3 Computational results

The efficiency of dc-balanced codes, E, was defined by (8.66), page 230 as
the ratio of the ’redundancy-sum variance’ product of the implemented code
and that of the maxentropic counterpart. That is

E =
{1− C(N)}σ2

z(N)

{1−R}s2 ,

where C(N) and σ2
z(N) are the capacity and sum variance of maxentropic

dc-balanced sequences with sum variation N . Note that for large sum vari-
ation, N , the ’redundancy-sum variance product’ of maxentropic (z) se-
quences is approximately constant (see Eq (8.34), page 213) and equals
0.2326. So that

E ≈ 0.2326

{1−R}s2 .

We calculated the sum variance of sequences generated by the random draw-
ing algorithm for selected values of the codeword length and redundancy.
The computation of the efficiency E is then straightforward. Figure 10.4
shows the results. The connected points have the same redundancy (1−R),
and the ith point on a curve corresponds to a code having i redundant bits,
codeword length i/(1 − R), and selection sets of size 2i. For comparison
purposes, we also plotted the efficiency of the polarity bit code (see Sec-
tion 8.6.1, page 229). By comparing the efficiency values at the ith point
on each curve, it can be seen that these values are approximately the same.

The efficiency of the random coding algorithm is practically indepen-
dent of the codeword length and is essentially determined by the number
of redundant bits used. It can be seen that codes with two or three re-
dundant bits are clearly more efficient than the polarity bit code. With an
increasing number of redundant bits, however, the efficiency decreases. The
decrease in performance, as will be explained in the next section, is due to
the shortcomings of the MRDS criterion.

10.3.4 Alternative metrics

The results, plotted in Figure 10.4, reveal that the usage of more than
two redundant bits does not lead to improved performance. The reason
that the performance decreases with a mounting number of redundant bits
can easily be understood. A quick calculation will make it clear that a
large selection set contains with great probability at least one zero-disparity
word. On the basis of the simple MRDS criterion one of the zero-disparity
words is randomly chosen and transmitted. As the sum variance of the
full set of zero-disparity codewords equals (n + 1)/6, (see Section 8.6.1,
page 229) irrespective of the rate of the code, we conclude that the efficiency

www.manaraa.com

10.3. ANALYSIS OF MULTI-MODE DC-FREE CODES 267

will asymptotically approach zero. More sophisticated metrics, which take
account of the running digital sum within the codeword, and not only at
the end of the word, may result in increased performance.

polarity-bit

1-R=1/512

1-R=1/256

1-R=1/192

1-R=1/128

1-R=1/64

Codeword length

E
ffi

ci
en

cy

Figure 10.4: Efficiency of random drawing algorithm using the MRDS
selection criterion.

In order to describe these more sophisticated metrics we introduce the
squared weight, wsq, of a codeword, defined as the sum of the squared RDS
values at each bit position of the codeword.

The two metrics examined are

1. Modified MRDS (MMRDS) criterion: from the codewords with min-
imal |WRDS|, the one with minimum wsq is selected.

2. Minimum Squared Weight (MSW) criterion: the codeword of minimal
wsq is selected from the selection set, irrespective of the WRDS of the
codeword.

Figure 10.5 shows the simulation results obtained for redundancy 1/128.
From the simulations, we infer the following characteristics:

• The MRDS method wastes the opportunity offered by the broader
selection sets. By properly selecting the codeword from the ones with
minimal |WRDS|, the efficiency of the MMRDS scheme tends to unity.

• As indicated by the curve of the MSW criterion, the best codewords
do not necessarily minimize the |WRDS|. Selecting the codeword with
minimal squared weight clearly results in more efficient codes.

www.manaraa.com

268 CHAPTER 10. GUIDED SCRAMBLING

Based on the above observations, we searched for a metric that is simple to
implement while its efficiency approaches that of the MSW criterion. The
outcome is described in the next section.

(a)

(b)

(c)

Number of redundant bits

E
ffi

ci
en

cy

Figure 10.5: Simulation results for the random drawing algorithm. The
redundancy is fixed at 1/128 for all simulations. Three different metrics,
(a) MRDS, (b) MMRDS, and (c) MSW, are compared. Simulations of
codes with other values of the redundancy produced similar results.

The minimum threshold overrun criterion

Our objective, in this section, is to construct a metric which takes into
account the RDS values within the codeword while having a structure that
is also easy to implement. The proposed selection scheme, termed minimum
threshold overrun (MTO) criterion, utilizes the parameter ”RDS threshold”,
denoted by M , M > 0. The MTO penalty is simply the number of times
the absolute value of the running digital sum within a word is larger than
M . As the squaring operation needed for the MSW criterion is avoided, the
implementation of the MTO criterion is not more complex than the MRDS
method. The codeword with minimum penalty is transmitted. If two or
more codewords have the same penalty, one of them is chosen randomly and
transmitted. This procedure does not seriously deteriorate the performance
as it is fairly improbable that two or more codewords in the selection set
have the same penalty value.

Figure 10.6, curve (b), shows simulation results obtained with the MTO
criterion. Optimal values of the threshold M were found by trial and error.
The MTO criterion is only slightly less efficient than the MSW criterion.

www.manaraa.com

10.4. EVALUATION USING HADAMARD TRANSFORM 269

All results shown so far have been obtained by a simulation program of
the random drawing algorithm. As a final check we also conducted simula-
tions with a full-fledged implementation using a scrambler with polynomial
x7 + x + 1. Experiments with other scrambler polynomials did not reveal
substantial differences.

Number of redundant bits

E
ffi

ci
en

cy
(a)

(b)

Figure 10.6: Simulation results for the random drawing algorithm having
fixed redundancy 1/128 with (a) the MSW criterion and (b) the MTO
criterion. The dotted line shows the results obtained for the implemented
encoding scheme using a scrambler with polynomial x7 + x+ 1.

The dotted curve, Figure 10.6, gives results on the basis of the MTO cri-
terion. The curve shows a nice agreement with results obtained with the
random drawing algorithm.

10.4 Evaluation using Hadamard Transform

Copeland & Tezcan [64] described a new method that offers a significant
saving in the complexity of the quality evaluation process. Their newly pro-
posed scheme exploits the Fast (Walsh-)Hadamard Transform (FHT). The
FHT makes it possible to efficiently generate the disparity of all codewords
in the selection set. The entries of the n× n Hadamard matrix, Hn, can be
expressed as

hn[i, j] = (−1)
∑

k
ikjk ,

where ik ∈ {0, 1} and jk ∈ {0, 1} represent the k-th bit in the binary
representation of the integers i and j, respectively. This structure leads

www.manaraa.com

270 CHAPTER 10. GUIDED SCRAMBLING

to very efficient methods for computing the Hadamard matrix. Let the
codeword length be n = 4. Then

H4 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Let the n-bit source word be denoted by x. The selection set consists of
the n (candidate) codewords that can be formed by the transformation
(scrambling) of the source word x with the n columns of the Hadamard
matrix. Then the entries vi of the vector v given by

v = Hn ∗ x

equal the disparity of the candidate codewords obtained by inverting the bits
in x on the positions, where the entries of the ith column of the Hadamard
matrix equals -1. The attractiveness of the FHT stems from the fact that v
can be evaluated with a number of computations that is proportional with
log n instead of n. The encoder transmits that codeword from the selection
set having an RDS as close to zero as possible. In addition, the encoder
transmits the binary representation of the corresponding column index i to
make it possible for the decoder to reconstitute the original source word.
We require log2 n bits for representing the index so that the rate of the code
is

R = n/(n+ log2 n).

There are two drawbacks of the above scheme. Firstly, the coding system is
very sensitive to error propagation as erroneous reception of the bits repre-
senting the column index could easily destroy large portions of the decoded
codeword. Secondly, the FHT scheme uses the disparity (and RDS) as
quality metric, and, as we have shown above, this will not lead to adequate
lf-suppression when the codeword is relatively long. Given the above seri-
ous drawbacks, it is not anticipated that the FHT scheme will be readily
applied in practice.

10.5 Comparison with alternative methods

It seems appropriate to compare the performance of the guided scrambling
method with other suitable coding techniques that can accommodate high-
rate codes. The polarity switch encoding method, detailed in Chapter 8,
is very suitable for this purpose. Here the basic polarity bit method is
extended with a look-ahead (LA) algorithm. The look-ahead algorithm
looks ahead p codewords, and evaluates, based on a suitable metric, the

www.manaraa.com

10.5. COMPARISON WITH ALTERNATIVE METHODS 271

full search tree of 2p possible choices of the polarity of the codeword in
the tree. The tree is evaluated prior to the transmission of each new n-bit
codeword. Thus the number of sum variance evaluations are the same for
both methods, but note that the 2p evaluations in the search tree have to
be performed every n-bit codeword, while in GS the 2p evaluations have to
be performed every block

As we have seen in this chapter, the spectral performance of any dc-
control algorithm depends heavily on the metric used for selecting a code-
word. For both encoding schemes we used the sum variance of the new
codeword (and the future words in LA) as a metric for the selection of a
codeword. We have conducted many simulations of which we will present a
few typical results.

1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

90

100

110

120

va
ria

nc
e

p

GS
LA

Figure 10.7: Sum variance of sequences encoded by the guided scram-
bling (GS) method and the look-ahead (LA) polarity switch method
as a function of p. The code redundancy is fixed at 1%. The LA
method uses a search tree of 2p branches, while the GS method has
a selection set of 2p codewords.

Figure 10.7 shows the sum variance of the encoded sequence as a function of
p. The redundancy of both, LA and GS, coding techniques is fixed at 1%.
Figure 10.8 shows the power spectral density H(fc) @ fc = 10−4 obtained
by the two methods. We observe that both methods achieve approximately
the same amount of suppression at very low frequencies for p > 2. The
sum variance of sequences, which are encoded by the guided scrambling
method, however, is significantly smaller than that obtained by the look-
ahead polarity switch method. We may readily observe the difference in
performance of both schemes. In the instance shown, the spectral notch of

www.manaraa.com

272 CHAPTER 10. GUIDED SCRAMBLING

the sequences encoded by the GS method is about 50% wider than the one
produced by the LA method.

1 2 3 4 5 6 7 8 9 10
-35

-30

-25

-20

-15

H
(1

0-4
)

p

GS

LA

Figure 10.8: Spectral density measured at fc = 10−4 of sequences
encoded by the guided scrambling (GS) method and the look-ahead
(LA) polarity switch method as a function of p. The code redundancy
is fixed at 1%. The LA method uses a search tree of 2p branches,
while the GS method has a selection set of 2p codewords.

10.6 Weakly constrained codes

Guided scrambling is a typical example of an embodiment of a weakly con-
strained code. Each source word of length m, m >> 1, is supplemented
by r bits, so that the codeword length is n = r +m. The rate of the code
is R = m/(r + m). The r supplement bits make it possible to generate a
selection set of L = 2r n-sequences. The particular method for generating
the selection set is not discussed here; we merely assume that the selection
set comprises sufficiently distinct and random words.

Assume we have a channel constraint which limits the channel capacity
to C. Then, according to Shannon [296], (see Chapter 2) the number, N(n),
of constrained codewords can be approximated by

N(n) ≈ A2nC , (10.4)

where A is a constant. The probability that in L drawings from randomly
generated sequences we will not find any sequence that obeys the given
constraint is simply

p = (1− p0)
L, (10.5)

www.manaraa.com

10.6. WEAKLY CONSTRAINED CODES 273

where

p0 =
N(n)

2n
≈ A2(C−1)n. (10.6)

As L = 2r and r = (1−R)n, we have

p =
(
1− A2(C−1)n

)2(1−R)n

. (10.7)

If for simplicity it is assumed that A2(C−1)n << 1, we have

ln(P) = −A2(C−R)n. (10.8)

Clearly, if R < C, it is possible to reduce the violation probability p by
choosing a sufficiently large codeword length n. The engineering difficulty
is that the number of computations grows exponentially with 2(1−R)n. In
particular for low-rate codes the number of computations can easily become
prohibitive, and, therefore, the application of the weakly constrained codes
is limited to high-rate codes. To illustrate the effectiveness of this idea
a worked example of a high-rate (0, k) RLL code will be given in the next
subsection. It should be noted, however, that the guided scrambling method
is extremely versatile. It can easily be configured to remove all kind of
patterns such as the sync or preamble field, or, alternatively, patterns that
could flaw the automatic gain control (AGC) or phase information.

10.6.1 Weak (0, k) codes

As an example, we will calculate, in this subsection, for a (0, k) code the
parameters A and C(0, k), and substitute them into (10.7) to be able to
judge the performance. We start with the computation of the constant A.

The number of self-concatable (0, k) words, Nc(n), of length n, equals the
coefficient an of the following generating function (see Section 6.6, page 157)

∑
aix

i =
q(x)

p(x)
=

x(1− xl+1)(1− xr+1)

(1− x)(1− 2x+ xk+2)
(10.9)

The parameters l = dk/2e and r = k − l denote the maximum number of
’zeros’ with which the words start or end, respectively. For large codeword
length n the number of codewords can be approximated by

N(n) ≈ Aλn, (10.10)

where λ = 2C(0,k) is the largest real root of the characteristic equation (see
[4.16])

zk+2 − 2zk+1 + 1 = 0 (10.11)

www.manaraa.com

274 CHAPTER 10. GUIDED SCRAMBLING

and the constant A equals (see eq. (6.32), page 158)

A = −λ
q(1/λ)

p′(1/λ)
. (10.12)

With the above expressions, we are now in the position to invoke (10.7).
Figure 10.9 shows the violation probability, p, that no sequence taken from
a selection set of size L of random sequences obeys the (0, k) constraint with
the codeword length n as a parameter. The code redundancy is 1%.

We may notice that for longer codewords, and thus larger selection
sets, the violation probability goes down more and more rapidly as long
as C(0, k) − R > 0. In this example, where R = 0.99, the violation prob-
ability p decreases with mounting codeword length n, if k ≥ 4 (see Table
4.4, page 60).

1e-009

1e-008

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

4 5 6 7 8 9 10

P

k

200300400500n=600

1e-009

1e-008

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

4 5 6 7 8 9 10

P

k

200300400500n=600

1e-009

1e-008

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

4 5 6 7 8 9 10

P

k

200300400500n=600

1e-009

1e-008

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

4 5 6 7 8 9 10

P

k

200300400500n=600

1e-009

1e-008

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

4 5 6 7 8 9 10

P

k

200300400500n=600

Figure 10.9: Probability, p, that no sequence of a sample of size L =
2n/100 of random sequences of length n satisfies the (0, k) constraint versus
k with the codeword length n as a parameter. The code redundancy 1−R
is 1%.

Let us examine the example, where the codeword length is n = 400. Then
the size of the selection set is L = 2400/100 = 16. Figure 10.9 shows that with
very small probability, << 10−9, the encoder will fail to find a viable code-
word that satisfies the k = 9 constraint. The k = 8 constraint is violated
with probability 2 10−8. By contrast, the conventional ”strict-to-the-book”
implementation of a (0,9) code, see Section 5.6.3, page 115, requires a redun-
dancy of 1−R = 1/25–four times the redundancy of the weakly constrained

www.manaraa.com

10.6. WEAKLY CONSTRAINED CODES 275

code– to guarantee the same k = 9 constraint. A comparison between the
properties of maxentropic (0, k) sequences and those of sequences generated
under the rules of guided scrambling have been conducted by Kunisa [211,
210].

The above computational results are very exciting. They show, among
others, that with a relatively small redundancy, 1−R = 0.01 and selection
set of size, L = 16, we can, on the average, achieve an extremely small prob-
ability of violation errors for, say, k ≥ 8. There is no difficulty to cast the
above code into silicon. But, the drawback of weakly constrained codes is, of
course, that they are sensitive for series of specific, worst case, source data.
A high-rate (0, k) code, serving as a ’safety net’ that guarantees for example
k = 11, combined with the guided scrambling algorithm might provide a
sound trade-off between redundancy, worst case performance, and average
performance. Results are given in [346].

An alternative method for generating weakly constrained RLL (0, k) codes
was proposed by Ming et al. [250]. The encoding is done in two steps. In
the first step, the encoder inserts (stuffs) a ’one’ after every string of k
consecutive ’zero’s, which leads to a string of variable length. This first
encoding step, by the way, is a traditional method in communications sys-
tems for constraining the maximum runlength [217]. In the second step,
the variable-length string so obtained is made synchronous (i.e., it has the
required feature of fixed output block length) by adding a certain number of
dummy bits. The number of dummy bits added depends on the number of
bit insertions made in the first step, where the total number of bits (stuffed
bits plus dummy bits), q, added to the source sequence is fixed. As the
proposed coding scheme cannot guarantee the fixed-length requirement, as
at most q bit stuffings can be accommodated, without disobeying the maxi-
mum runlength constraint, this leads to a class of weakly constrained codes.
The authors analyzed the codes, and found that the codes offer results which
are better or comparable to those of currently available ’rigid’ (0, k) codes,
however, at the cost of encoder failure with arbitrarily low probability.

www.manaraa.com

276 CHAPTER 10. GUIDED SCRAMBLING

www.manaraa.com

Chapter 11

Dc-free RLL Codes

11.1 Introduction

This text has reviewed the development of several techniques for the de-
sign of codes whose output meets prescribed runlength constraints and we
have investigated the theoretical properties and practical implementations
of dc-balanced sequences. This chapter reviews binary sequences with com-
bined constraints on the runlengths and dc-unbalance. A runlength-limited
sequence whose running digital sum is bounded, is characterized by three
parameters d, k, and N , where d and k are the runlength parameters de-
scribed in Chapter 4 and the running digital sum zi (RDS) at any digit
position in the coded sequence is bounded by N = maxi |{zi}| units (see
Chapter 8). A little thought will make it clear that a constraint on the
running digital sum automatically sets a bound to the maximum runlength,
namely k ≤ N − 2.

In the following sections of this chapter, the properties of maxentropic
dc-free RLL (DCRLL) sequences are first considered. Thereafter, in Sec-
tion 11.4, it is shown how practical codes can be devised that satisfy the
given channel constraints. It will be shown that industry-standard RLL
codes can be supplemented by a simple mechanism with which the lf-
components of the generated sequences can be suppressed. In the remain-
ing part of this chapter, we will study the construction and performance of
EFM-like codes. We start in the next section, with the computation of the
capacity of DCRLL sequences.

11.2 Capacity of DCRLL codes

Using the techniques discussed in Chapter 8, it is now fairly straightfor-
ward to compute the capacity of sequences with a constraint on both the
runlength and the number of sum values the sequence assumes. We follow

277

www.manaraa.com

278 CHAPTER 11. DC-FREE RLL CODES

the approach given by Norris & Bloomberg [264] whose early work on this
topic coincides with the study provided in Chapter 2.

The capacity of a runlength-limited sequence with a bounded running dig-
ital sum is characterized by three parameters d, k, and N , and will be
denoted by C(d, k,N).

Chapter 4 provides an expression of the capacity C(d, k,∞) of RLL
sequences:

C(d, k,∞) = log2 λdk, (11.1)

where λdk is the largest real root of the characteristic equation

zk+1 − zk−d − zk−d−1 − · · · − z − 1 = 0. (11.2)

The capacity C(0, N − 2, N) of a sequence that assumes a maximum of N
sum values is computed in Chapter 8, and it is given by

C(0, N − 2, N) = 1 + log2 cos
π

N + 1
. (11.3)

Obviously,

C(d, k,N) ≤ min{C(d, k,∞), C(0, N − 2, N)}. (11.4)

Let the number of distinct sequences of length n with upward and downward
directed transitions and running digital sum z, 1 ≤ z ≤ N , be denoted by
Nu(z, n) and Nd (z, n), respectively. We obtain

Nd (z, n) =
k+1∑

j=d+1

Nu(z − j, n− j)

Nu(z, n) =
k+1∑

j=d+1

Nd (z + j, n− j).

(11.5)

For sufficiently large sequence length n, symmetry about z = 0 yields

Nd (z, n) = Nu(−z, n). (11.6)

The above relations define a set of linear difference equations which can be
solved by assuming the solution

Nu(z, n) = u(z)λn

and
Nd (z, n) = d(z)λn , 1 ≤ z ≤ N.

Writing out gives

d(z) =
k+1∑

j=d+1

d(−z + j)λ−j, 1 ≤ z ≤ N. (11.7)

www.manaraa.com

11.2. CAPACITY OF DCRLL CODES 279

This is a set of N homogeneous linear equations. We define the matrix D(λ)
with elements

dij = λ−(i+j−N−1)f(i+ j −N − 1), 1 ≤ i, j ≤ N,

where

f(p) =

{
1, if d+ 1 ≤ p ≤ k + 1
0, otherwise.

The capacity of the constrained channel, given the parameters N, d, and k,
is found by

C(d, k,N) = log2 λmax,

where λmax is the greatest real root of

det[D(λ)− I] = 0.

In the limit N → ∞, all RDS states are equally likely and the set of linear
equations degenerates to one equation:

k+1∑

i=d+1

λ−i − 1 = 0.

This equation coincides with (4.16), page 59. Table 11.1 shows the results
of computations for various values of digital sum variation and runlength
parameter The following examples may serve to illustrate the theory.

Example 11.1 Let (d, k,N) = (0, 1, 3). The characteristic equation is

det[D(λ)− I] =

∣∣∣∣∣∣

−1 0 0
0 −1 λ−1

0 λ−1 λ−2 − 1

∣∣∣∣∣∣

= λ2 − 2 = 0.

The largest root is
√
2, so that the capacity is C(0, 1, 3) =1/2. The bi-phase

code, the details of which are treated in the previous chapters, is an interesting

example of a code embodiment that achieves a rate equal to the capacity for the

prescribed channel constraints.

Example 11.2 Consider the set of constraints (d, k,N) = (1, 3, 7). The char-
acteristic equation is

det[D(λ)− I] = λ8 − λ6 − 3λ4 + λ2 + 2

= (λ2 + 1)2(λ2 − 1)(λ2 − 2) = 0.

The largest root is
√
2, so that the capacity is C(1, 3, 7) = 1/2. The Zero-

Modulation code to be discussed shortly is a rate = 1/2 code which complies

with the given runlength parameters and maximum sum variation.

www.manaraa.com

280 CHAPTER 11. DC-FREE RLL CODES

Table 11.1: Capacity of dc-balanced runlength-limited sequences.

d k N = 5 N = 6 N = 7 N = 8 N = 9
0 1 .6358 .6551 .6662 .6731 .6778
0 2 .7664 .8032 .8244 .8378 .8468
0 3 .7925 .8416 .8704 .8887 .9012
0 4 .8495 .8832 .9048 .9196
0 5 .8858 .9094 .9256
0 6 .9103 .9273
0 7 .9276
1 2 .3471 .3705 .3822 .3889 .3931
1 3 .4248 .4746 .5000 .5145 .5237
1 4 .5018 .5390 .5608 .5746
1 5 .5497 .5772 .5947
1 6 .5816 .6020
1 7 .6039
2 3 .2028 .2457 .2625 .2709 .2757
2 4 .3089 .3471 .3666 .3777
2 5 .3723 .4024 .4199
2 6 .4135 .4366
2 7 .4418
3 4 .1568 .1903 .2035 .2101
3 5 .2434 .2744 .2902
3 6 .2972 .3224
3 7 .3333

11.3 Spectrum of maxentropic DCRLL se-

quences

The power spectral density function of maxentropic sequences can, in prin-
ciple, be found using a straightforward generalization of the techniques de-
scribed in Chapter 3. The presentation of the finite-state machine under-
lying the specified constraints is somewhat awkward, since the number of
states, about N × k, required to describe the machine is fairly large. Ker-
pez, [202] presented a description of the combined (d, k) and N constraint in
terms of a variable length graph and its adjacency matrix/indexadjacency
matrix that requires a relatively small number, N − 1− d, of states.

Let the DCRLL message be denoted by X = {x0, x1, . . . , }, xi ∈ {−1, 1}.
The RLL message is assumed to be composed of runlengths of lengths Ti,
i = 0, 1 . . ., taken from the set of allowed runlengths dk = {d+1, . . . , k+1}.

www.manaraa.com

11.3. SPECTRUM OF MAXENTROPIC DCRLL SEQUENCES 281

As the sequence X has limited digital sum variation (DSV) we have

∣∣∣∣∣∣

j∑

i=0

xi

∣∣∣∣∣∣
≤ c,

where N = 2c + 1. The above constraint can be described in terms of
the runlengths. The sequence X is composed of a cascade of runlengths Ti

whose symbols have alternate polarity. Transitions of the polarity of the
sequence X, i.e. instants where xi 6= xi+1, occur therefore at tj =

∑j
i=0 Ti.

We simply find ∣∣∣∣∣∣

tj∑

i=0

xi

∣∣∣∣∣∣
=

∣∣∣∣∣∣

j∑

i=1

(−1)iTi

∣∣∣∣∣∣
= |Uj|,

where the sequence Uj = Tj − Uj−1, U0 = 0. In other words the DSV
constraint is equivalent to

|Uj| ≤ c for all j.

Thus a sequence satisfies the (d, k,N = 2c+1) constraint if and only if the
sequence of runlengths {Tj} satisfies, for all j,

d+ 1 ≤ Tj ≤ k + 1 (≤ 2c) (11.8)

and
d+ 1− c ≤ Uj ≤ c. (11.9)

The general form of the adjacency matrix D for the (d, k,N = 2c + 1)
constraint, derived from (11.8) and (11.9), has a regular structure. The
matrix has size (N − 1 − d) × (N − 1 − d), and is constant on the anti-
diagonals. If the value of k is non-trivial, i.e. k+1 ≤ N − 1, the lower right
of the diagonal of the matrix is zero,

D(z) =

0 0 0 . . . 0 . . . 0 z−d−1

0 0 0 . . . 0 . . . z−d−1 z−d−2

...
...

0 z−d−1 z−d−2 . . . z−k . . . 0
z−d−1 z−d−2 z−d−3 . . . z−k . . . 0 0

, (11.10)

while in the case of k = N − 2, the lower right corner is filled

D(z) =

0 0 0 . . . 0 z−d−1

0 0 0 . . . z−d−1 z−d−2

...
...

0 z−d−1 z−d−2 . . . d−2c+1

z−d−1 z−d−2 z−d−3 . . . z−2c+1 z−2c

. (11.11)

www.manaraa.com

282 CHAPTER 11. DC-FREE RLL CODES

Using the above adjacency matrix it is now quite straightforward to com-
pute the capacity and the spectrum of the maxentropic sequence for large
values of N and k. Figure 11.1 shows the power spectral density function
of maxentropic sequences with N = 7, d = 1 and the maximum runlength
k as a parameter. Apparently, the influence of the maximum runlength pa-
rameter is drastic. Most noticeable is the fact that the curves become more
peaked with decreasing maximum runlength parameter k.

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4

H
(f

)

f (linear)

k=2

k=4

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4

H
(f

)

f (linear)

k=2

k=4

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5

H
(f

)

f (linear)

k=2

k=3

k=4

Figure 11.1: Power spectral density function of a maxentropic dc-
balanced, runlength-limited sequence. Digital sum variation N = 7, and
runlength parameters d = 1 and k = 2, 3, 4.

Figure 11.2 shows the spectrum for the parameters d = 2, k = 10 and
N = 12, 15, 21, and N = 33 with a logarithmic frequency-axis and a vertical
H(f) (dB) axis, where a dB is defined by 10 log10H(f). The choice of the
log axes clearly shows the parabolic relationship,

H(f) ≈ af 2,

between power and frequency in the low frequency range. The low-frequency
power increases with 6 dB per octave (or 20 dB per decade) frequency
increase.

As in the instance of ’pure’ dc-free codes, we need a sound yardstick for
measuring the low-frequency properties of DCRLL sequences. In Chapter 8
the spectral width is quantified by a parameter called cut-off frequency ω0.
As discussed in Chapter 8 the sum variance of the sequence is closely related

www.manaraa.com

11.3. SPECTRUM OF MAXENTROPIC DCRLL SEQUENCES 283

to the cut-off frequency. In a similar fashion, Braun [43] defined the cut-off
frequency of DCRLL sequences, denoted by ω0, by

H(ω0) =
H0(d, k)

2
, (11.12)

where H0(d, k) denotes the spectral density at zero frequency of the maxen-
tropic (d, k) constrained sequence. The value of H0(d, k) can be computed
with (4.35) at page 66. For d = 2 and k = 10, the parameters used in
Figure 11.2, we find H0(d, k) = 0.835(= −0.8 dB).

-30

-25

-20

-15

-10

-5

0

5

10

0.0001 0.001 0.01 0.1

H
(f

)
(d

B
)

121521

-30

-25

-20

-15

-10

-5

0

5

10

0.0001 0.001 0.01 0.1

H
(f

)
(d

B
)

121521

-30

-25

-20

-15

-10

-5

0

5

10

0.0001 0.001 0.01 0.1

H
(f

)
(d

B
)

1521

-30

-25

-20

-15

-10

-5

0

5

10

0.0001 0.001 0.01 0.1

H
(f

)
(d

B
)

f (log)

1521N=33

ωo

Figure 11.2: Power spectral density function of a maxentropic dc-
balanced RLL sequence (logarithmic axes). Runlength parameters d = 2
and k = 10 with N as a parameter. By way of example, the cut-off
frequency ω0 is shown for d = 2, k = 10, and N = 21.

Braun also studied the relationship between redundancy and cut-off fre-
quency. He defined the extra redundancy as the difference between the
capacities of the pure RLL channel and the DCRLL channel, or

ρ(d, k,N) = C(d, k,∞)− C(d, k,N). (11.13)

The parameter ρ(d, k,N) quantifies the redundancy that results from the
additional constraint on the running digital sum N . Braun showed that
maxentropic sequences have the property that there is, in good approxi-
mation, a linear relationship between cut-off frequency ω0 and the extra
redundancy ρ. The relationship is given by

ω0 ≈ ρ(d, k,N)
2 ln 2
π2

6
− 1

, N >> 1. (11.14)

www.manaraa.com

284 CHAPTER 11. DC-FREE RLL CODES

The constant of proportionality between cut-off frequency and extra redun-
dancy is independent of the d, k, and N constraints. The constant was
derived for pure RDS constrained sequences (see Chapter 8), and is also
valid if in addition d and k constraints are imposed. Computer simulations
revealed that the above relationship appears to be accurate to within 5%
for N > 20.

In the next section, we will discuss various design methods that emerged
in the literature.

11.4 Examples of DCRLL codes

The design of any constrained code can, at least in principle, be system-
atically accomplished by the design techniques discussed in the previous
chapters of this book. Unfortunately, the design of a DCRLL code whose
rate is close to the Shannon capacity of the constrained channel, is severely
hampered by the large number of states of the finite-state machine which
models the channel constraints at hand. The large number of states of the
underlying FSM, can, at least in principle, be handled by buying a suf-
ficiently large computer, but the insight required is too easily lost. The
design of DCRLL codes is therefore (still) the province of a plurality of
ad hoc methods, for example [324, 316, 22, 221]. Basically there are four
systematic design approaches that emerged in the literature.

The first method uses the ACH algorithm to design an RLL code. As
discussed in Chapter 7, in the final stage of the ACH algorithm we end up
with a graph with the property that from any state of the graph there are at
least 2m (m is assumed to be the source word length) outgoing edges. There
are (hopefully) states with a larger number of outgoing edges. These surplus
edges are used as alternative codewords that can be used for dc-control.
The rate 8/16, (2,10) EFMPlus code, to be discussed in Section 11.5.2, is
an example of a DCRLL code used in practice (DVD) that was designed
according to these guidelines.

The second systematic method, which was first developed by Lin &
Liu [222] and later generalized by Abdel-Khaffar & Weber [1], uses a simple
block code plus a number of merging bits for concatenating the words. The
number of merging bits is chosen in such a way that there are at least
two alternative channel representations with different weight parities. The
merging bits are chosen after observing the dk constraint and disparity of
the upcoming codeword.

In the third method, dc-control is effectuated by multiplexing the source
data or the encoded data with dc-control bits. A given, state-of-the-art,
RLL code, for example the rate 2/3, (1,7) code, is used to generate RLL
sequences. The sequences generated under the coding rules of said code

www.manaraa.com

11.4. EXAMPLES OF DCRLL CODES 285

are multiplexed with channel bits for minimizing the low-frequency compo-
nents, the dc-control. The user data or alternatively the encoded data are
partitioned into segments of ν bits. Basically, there are two approaches with
which a (d, k) (or other constrained) encoder can be extended with multi-
plexed dc-control, namely at source data level or at channel data level. The
two multiplex approaches of dc-control have various distinct features.

Between two consecutive ν-bit segments β dc-control bits are inserted,
and the β dc-control bits, in turn, are chosen to minimize the low-frequency
components. In the experimental phase, we have the freedom to select the
parameters ν and β such that the required dc-suppression is reached. There
is, in other words, no need to redesign the constituent RLL code.

The fourth construction uses a new technique developed by Fair et al.
[76], called Guided Scrambling. In Guided Scrambling, a selection set of
2β alternative RLL sequences is generated, and the encoder selects that
sequence that ”best” matches the spectral requirements. In order to create
such a selection set, we need β redundant bits per block of ν data bits.
As in the second method, time multiplex, we have the flexibility to choose
the parameters ν and β. The results are excellent, and more results are
presented in Chapter 10.

The success of the design method depends on various factors such as,
for example, how much lf-suppression is required. In most of the practical
cases that the author encountered an extra redundancy for the dc-control of
2-3% was sufficient to yield the required dc-suppression. In that instance,
codes using multiplexing methods offer an excellent performance and design
flexibility.

In the next subsections we will describe two methods for dc-control,
while the third method, Guided Scrambling, is discussed in Chapter 10,
page 257.

11.4.1 ACH-algorithm-based DCRLL codes

A simple and effective method for designing DCRLL codes is based on the
application of the ACH algorithm (or other schemes for designing encoder
graphs). Define the usual parameters such as m, n, d, and k, and apply
the ACH algorithm. Then we will find an encoder graph with the property
that from each encoder state there are at least 2m code words. In some
instances there are more than the required code words available, so that
the surplus words can be used as alternative channel representations for
minimizing the spectral content at the low frequency end. A very simple
example may illustrate this.

Example 11.3 Let d = 2, k = ∞, m = 2, and n = 4. Baldwin [22], see
also Section 7.6, page 181, presented a two-state (d=2) RLL encoder, where the

www.manaraa.com

286 CHAPTER 11. DC-FREE RLL CODES

surplus codewords are used as alternative channel representations. For the case
n = 4, two words can be combined to form an alternative pair. Pairing of words,
such that it has the greatest impact on the spectral control, is not straightforward.
Here we opted to combine the codewords ’1000’ and ’1001’.

i h(i, 1) g(i, 1) h(i, 2) g(i, 2)

0 0000 1 0100 1
1 0000 2 0100 2
2 0010 1 100x 1
3 0001 1 1000 2

Then we create the possibility to set or not set a transition in the corresponding

NRZ sequence, so that we can invert (or not) the sequence following that code-

word. In the Table, the word ’100x’ means that the encoder may choose ’x’ to

be ’0’ or ’1’, i.e., choose between the codewords ’1000’ and ’1001’, for minimizing

the lf content.

Note that the above encoder does not guarantee the dc-control, as it is
not guaranteed that the encoder will ever transmit input word ’2’ while in
State 2. It is not difficult to generalize the concept demonstrated in the
above example to other values of d and n, see, for example [197] for a rate
8/12, d = 1 code. The EFMPlus code (d=2), discussed in Section 11.5.2,
page 296, is a byte-oriented dk-constrained code.

In the next section, we will present a description of an alternative design
method, where dc-control bits are multiplexed with the user or channel data.

11.4.2 Dc-control: data level versus channel level

Assume the d and k constraints are given and that an efficient (d, k) code has
been found in the literature or, alternatively, constructed using the various
methods offered in this book. A straightforward method for extending a
standard (d, k) code with dc-suppression is to add (or stuff) redundant bits,
whose values are chosen to reduce the power density at the low-frequency
end. The redundant bits are usually called dc-control bits. Essentially, there
are two approaches with which a (d, k) (or other constrained) encoder can
be extended with multiplexed dc-control, namely at (a) source data level or
at (b) channel data level.

Multiplexing at either level is shown in Figure 11.3. Between segments
of ν source data or between segments of ν encoded data β dc-control bits
are inserted. In both multiplex formats, the β dc-control bits are chosen to
minimize the low-frequency components of the channel sequence generated.
This can be accomplished by tallying the running digital sum at the end
of each candidate segment. The encoder transmits that candidate segment

www.manaraa.com

11.4. EXAMPLES OF DCRLL CODES 287

whose RDS is closest to zero. At the receiver site, the added dc-control bits,
either at data or channel level, can easily be skipped by the decoder.

The two multiplex approaches of dc-control have various distinct fea-
tures. The β dc-control bits can be freely chosen if they are multiplexed
at source data level. Then the encoder has 2β possible sequences to be
tried. If, on the other hand, the dc-control bits are multiplexed with the
(d, k) sequence, the multiplexed sequence so generated has to obey the (d, k)
constraints in force, and as a result the number of candidate sequences to
be tried is less than 2β. For the dc-control to be effective under all worst
case circumstances, it must guarantee that an (almost) entire segment of
ν modulated data bits can be inverted or not. We can easily verify that if
the dc-control bits are multiplexed with the (d, k) sequence, that in order
to guarantee said worst case performance, we require at least β = d+1 dc-
control bits and the maximum runlength at the segment boundaries will in-
crease from k to k+1. Similar methods have been proposed by Odaka [266],
Coppersmith & Kitchens [65], Patel [276], and Ino [169]. Coene [60] pro-
posed to employ a combi code, which alternates between a first and a second
RLL code. The first code has a codeword length n, while the second code
has a codeword length n+ β. Then the extra β channel bits are part of the
second RLL code, which can then be optimized for dc-control.

β ν

β ν

β ν

Figure 11.3: The user data or encoded data are partitioned into
segments of ν bits, and between two consecutive ν-bit segments β
dc-control bits are inserted.

When, on the other hand, dc-control bits are inserted at source level, see
Moriyama [256], the matter of worst case performance is much more in-
volved. The encoded segments are both a function of the source data and
the encoder state at the start of the segment. It is therefore not recom-
mended to use an industry-standard (d, k) code. A possible solution, using
the parity preserving word assignment, will be discussed in the next section.

www.manaraa.com

288 CHAPTER 11. DC-FREE RLL CODES

11.4.3 Codes with parity preserving word assignment

In order to make it possible to efficiently control the dc-content in the source
date level mode, we have made the assignment between source words and
codewords in such a way that the parity of both source word and its assigned
codeword are the same. The parity, P , of an n-bit word (x1, . . . , xn), xi ∈
{0, 1}, (either source or codewords) is defined by

P =
n∑

i=1

xi mod 2.

In other words, if the source word has an even (or odd) number of ’one’s then
its channel representation also has an even (or odd) number of ’one’s. A
code with a parity preserving assignment has the virtue that when it is used
in conjunction with dc-control bits at data level that setting an even (or
odd) number of ’one’s at data level will result in an even (or odd) number
of ’one’s at code level. This leads, as we will demonstrate shortly, to an
efficient dc-control.

Table 11.2: Variable-length synchronous rate 2/3, (1,∞) code with parity
preserving assignment.

Data Code
00 ← → 000
01 ← → 010
10 ← → 100
1100 ← → 001010
1101 ← → 001000
1110 ← → 101010
1111 ← → 101000

The variable length rate 2/3, (1,∞) code shown in Table 7.10, page 168,
can be rewritten to comply with the parity preserving property. The result
is shown in Table 11.2. It can easily be verified that indeed the assignment
is parity preserving.The variable length rate 2/3, (1,8) code shown in Ta-
ble 7.11, page 168, can also be rewritten in order to comply with the parity
preserving assignment. The list is omitted for space reasons.

The variable length rate 1/2, (2,7) code, shown in Table 7.9, page 167,
can be rewritten. The result is listed in Table 11.3. A parity preserving
assignment of a rate 2/3, (1,8) code, first presented by Kahlman & Im-
mink [181], is based on the look-ahead rate 2/3, (1,7) code described in
Section 7.4.1, page 171. Table 11.4, the main table, and Tables 11.5 and
11.6, the two substitute tables, show the encoding rules of the new code

www.manaraa.com

11.4. EXAMPLES OF DCRLL CODES 289

parity preserving code. A similar look-ahead rate 2/3, (1,7) parity preserv-
ing code was developed by Kahlman et al. for the BluRay Disc System
[182, 260]. The full coding table of the code consists of a main table and
two substitute tables instead of a single substitute table. It can easily be
verified that the assignment is indeed parity preserving.

Table 11.3: Variable-length synchronous rate 1/2, (2,7) code.

Data Code
10 ← → 0100
01 ← → 1000
001 ← → 001000
000 ← → 100100
111 ← → 000100
1101 ← → 00001000
1100 ← → 00100100

Table 11.4: Basic coding table parity preserving (1,8) code.

Data Code
00 101
01 100
10 001
11 000

Table 11.5: Substituting Coding Table I parity preserving (1,8) code.

Data Code
00.00 100.010
00.01 101.010
10.00 000.010
10.01 001.010

The code was found by trial and error, as no approach is (yet) available
for systematically constructing codes with a parity preserve word assign-
ment.The systematic design of RLL codes with parity preserving word as-
signment is, a challenging task. The above examples show that it is indeed

www.manaraa.com

290 CHAPTER 11. DC-FREE RLL CODES

possible and that such codes offer a better performance than their counter-
parts. Block codes are by their virtue of simplicity good candidates, but
the complexity issue will hamper their design. Variable length synchronous
codes seem to be promising candidates. It is not (yet) clear how we can
efficiently design parity preserving codes with the ACH algorithm.

Table 11.6: Substituting coding table II parity preserving (1,8) code.

Data Code
11.11.11 000.010.010
11.11.10 001.010.010
01.11.10 101.010.010
01.11.11 100.010.010

Figure 11.4: Performance comparison of dc-control at data and chan-
nel level. As a comparison the performance of maxentropic DCRLL
sequence has been plotted.

Performance comparison

The difference between the quality of the alternative dc-control methods
has been assessed by Wang et al. [332]. The power density measured at a
relatively low channel frequency, fc/1000, was used as a quality criterion.
Computer programs have been written for simulating the two alternative
coding schemes, where the dc-control bits are multiplexed at source or at

www.manaraa.com

11.4. EXAMPLES OF DCRLL CODES 291

channel level, respectively. The code for the channel-level multiplex is the
standard, rate 2/3, (1,7) code, while the source-level multiplex is the par-
ity preserving, rate 2/3, (1,8) code described in the previous section. He
observed that the parity preserving code performs 2 dB better than the
standard rate 2/3, (1,7) code used with channel-level multiplex in the range
of dc-control redundancy of 1-4%. Figure 11.4 shows results of computa-
tions. As we can observe there is quite some room for improvement with
respect to the performance of maxentropic sequences.

11.4.4 Zero Modulation

Zero Modulation (ZM) was designed by Patel [274, 273] for a rotary-head
storage system (IBM 3850). The clever idea in ZM is to slightly modify the
MFM code so that it becomes dc-balanced. It seems appropriate at this
point to reconsider the MFM code (see Chapter 5).

MFM, an R = 1/2, (d = 1, k = 3) code, is a simple block code with code-
words of length n = 2. A simple merging rule when the NRZI notation is
employed. The coding rules are shown in Table 11.7. The symbol indicated
with ’x’ is set to ’zero’ if the preceding symbol is ’one’ else it is set to ’one’.
It can be verified that this construction yields a maximum runlength of
k = 3.

Table 11.7: Coding rules MFM code.

Source Output
0 x0
1 01

By allowing a larger maximum runlength it is possible to create a degree
of freedom that provides the opportunity to balance the encoded sequence.
Both the ZM code and the Modified Squared code, to be considered in the
subsequent section, operate according to this principle. So we have the
means to modify some sequences, but what sequences have to be modified?
To answer this question we must examine the MFM encoding process in
greater detail.

Any source stream may be considered a series of sequences of two types:

(a) 011110 tn ’one’s bounded by ’zero’s, tn ≥ 0 and

(b) 111111 tm ’one’s.

www.manaraa.com

292 CHAPTER 11. DC-FREE RLL CODES

Under MFM coding rules (change-of-state encoder included), sequence of
type (a) with tn even and non-zero have a non-zero dc-balance which, upon
concatenation with interleaving type (b), tm even sequences, can grow indef-
initely. All other sequences, type (a) with tn odd or zero or type (b), have
zero dc-balance. Reflection on the MFM waveforms will reveal why this is
so. In the sequences with non-zero dc-balance, ZM encodes the ’zero’s in the
MFM manner the ’one’s, however, are encoded as though they were ’zero’s
but with alternate transitions deleted. For example, a type (a) source se-
quence 011110 would be encoded according to MFM rules as x0 01 01 01 01
00 (NRZI notation) but according to ZM rules is encoded as x0 10 00 10 00
10 (NRZI notation). The difficulty with the implementation of this coding
scheme is that one has to look for sequences of a certain type. In prin-
ciple, therefore, infinite look-forward is required to identify the sequence
boundaries and to provide the ZM modified sequence if, indeed, tn turns
out to be even. In a practical realization, the amount of memory required
for look-ahead can be limited to f bits, where f is a positive integer, by
adding a small amount of redundancy by inserting a parity/ indexparity at
the end of every section of f source bits. A practical value of f is 128. It
is relevant to note that, though the encoder requires infinite look-back and
look-forward, the decoder window of the sliding-block decoder is confined
to six channel bits, thus guaranteeing a limited error propagation. Karabed
& Siegel [188] presented a 100% efficient sliding-block code with the same
parameters that can be encoded with a finite-state machine encoder.

11.4.5 Miller-Miller code

Mallinson and Miller [228, 248, 249] published a code, called Miller-Miller
or M2 code, which possesses the following properties: d = 1, k = 5 and
N = 7. Thus, the maximum runlength has increased with respect to con-
ventional MFM and ZM. In M2, as in ZM, the basic MFM code is modified
so that it becomes dc-balanced. Again, this is accomplished by modifying
the sequences which have non-zero dc-balance. To limit the look-forward
operation, however, the modifications are introduced only at the end of the
sequences. In the sequences with non-zero dc-balance, M2 encodes all the
source ’one’s, apart from the last, in the standard MFM manner; the final
’one’ is simply ignored. As a result, the maximum runlength parameter is
increased to k = 5. The suppression of a ’one’ bit transition may be recog-
nized by the failure of a transition to occur in less than five clock periods of
a previous transition. Thus, the suppressed data transitions can be detected
in the receiver by inspecting no more than five successive channel bits thus
limiting the propagation of errors. An alternative of the M2 code was given
by Isozaki [171], who constructed a byte oriented rate 8/16, DCRLL (1,4)
code. Lin & Liu [222] published an alternative to M2, with the parameters

www.manaraa.com

11.5. EFM REVISITED 293

k = 5 and N = 21. This M2 alternative uses 16-bit codewords, which in-
clude 3-bit merging words. The merging words are operated, as in EFM, to
preserve the d and k constraint, and to minimize the lf content. The 3-bit
merging words guarantee an effective dc-control.

11.5 EFM revisited

In this section, we will take a closer look at EFM and EFMPlus used in the
CD and DVD, respectively. We shall also offer alternatives to EFM coding,
so-called EFM-like codes.

11.5.1 EFM

As discussed in Chapter 5 the main parameters of EFM are d = 2, k = 10,
and rate R = 8/17. Detailed information can be found in the patent issued
to Immink & Ogawa [165]. The 8-bit source data is translated into a 14-bit
d-constrained word. The 14-bit words are concatenated with 3-bit words,
merging words.

RDS

t

010

001

000

0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1

1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0

data bits

channel bits

XMM=000

XMM=010

XMM=001

X M M

Figure 11.5: Strategy for minimizing the running digital sum (RDS).

www.manaraa.com

294 CHAPTER 11. DC-FREE RLL CODES

There are instances where the merging word, is not uniquely governed by the
minimum and maximum runlength requirements. This freedom of choice is
utilized for minimizing the power density at the low-frequency end. Fig-
ure 11.5 shows the merging process.Eight user bits are translated into 14
channel bits using a look-up table. The 14 bits are cascaded, ’merged’, by
means of 3-bit merging words in such a way that the runlength conditions
continue to be satisfied. For the case shown, the condition that there should
be at least two ’zero’s between ’one’s requires a ’zero’ at the first merging bit
position. There are thus three alternatives for the merging words, namely
’000’, ’010’, and ’001’. The encoder chooses the alternative that gives the
lowest absolute value of the RDS at the end of a new codeword, i.e ’100’ in
this case.

The codewords and the 3-bit merging words are chosen such that the
dk-constraint of the catenation of alternate code words and merging words is
satisfied. In the experimental phase of the Compact Disc [278], it was learnt
that the suppression of low-frequency components, when only two merging
bits are used, is not sufficiently effective. Thus the number of merging bits
was increased to three, so providing a greater degree of freedom to set or
omit transitions in the merging bits. With three merging bits in 65% of the
block catenations a transition can be set or omitted freely.

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

0.0001 0.001 0.01 0.1

H
(f

)
(d

B
)

f (log)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

0.0001 0.001 0.01 0.1

H
(f

)
(d

B
)

f (log)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

0.0001 0.001 0.01 0.1

H
(f

)
(d

B
)

f (log)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

0.0001 0.001 0.01 0.1

H
(f

)
(d

B
)

f (log)

Figure 11.6: Spectrum of classic EFM. The straight line is a least
square mean estimate of the low-frequency part of the spectrum.

The more effective low-frequency control is achieved at the expense of 1/17
of the information rate. Note that the merging process does not guarantee
that adequate alternative channel representations can always be found. This
means that the RDS of an EFM encoded sequence, N , is unlimited for

www.manaraa.com

11.5. EFM REVISITED 295

judiciously chosen input data.In practice, this did not lead to any (known
to the author) difficulties in playing CD’s. Apparently, audio and data files
are sufficiently random not to become problematic. The Power Spectral
Density (PSD) function of classic EFM has been obtained by computer
simulation. Results are plotted in Figure 11.6. Noda & Ishizawa [263]
published a d = 1, rate 12/18 block code, which uses a similar merging rule
for dc-suppression and cascading the code words as in EFM. Lin & Liu [222]
published a construction technique for (1, k ≥ 4) codes. The construction is
based on a merging bit rule and the usage of dklr sequences. They developed
a rate 8/16, (1,5) dc-free code, which has similar characteristics as the M2

code (see Section 11.4.5).

Compatible alternatives to EFM

In principle, better suppression of the low-frequency components can be ob-
tained, without offending the agreed standard for the Compact Disc system,
by applying improved merging strategies. For example, by looking more
than one symbol ahead, since minimization of the low-frequency content in
the short term does not always contribute to longer-term minimization. Im-
provements of 6-10 dB have been reported [161]. The look-ahead strategy
is not used in present equipment.

Immink [159] observed that the standard EFM encoding method is
overly restrictive in the choice of the merging words, and that merging
words that do not satisfy the dk-constraint can be employed. An alterna-
tive encoding scheme, which is fully compatible with standard EFM, was
presented. As discussed above, in standard EFM only four 3-bit merging
words of the eight possible 3-bit merging words are permitted to be used,
namely ’001’, ’010’, ’000’, and ’100’. The remaining possible 3-bit merging
words, namely ’111’, ’011’, ’101’, and ’110’ are not used in the standard
scheme as they violate the prescribed d(= 2)-constraint. In the alternative
scheme [159], the four remaining 3-bit merging words, ’111’, ’011’, ’101’,
and ’110’, are allowed to be used, so that, as a result, all eight 3-bit merg-
ing words can be used. Very probably, the above three merging words will
be received in error as they violate the d = 2 constraint. But, as the 3-bit
merging words are skipped anyhow, this will not affect the (user) bit error
rate. There are, however, three restrictions: firstly, in the cascade of alter-
nate 14-bit code words and 3-bit merging words the k(= 10) constraint must
be satisfied, and secondly in the cascade of alternate 14-bit code words and
3-bit merging words the sync pattern may not be generated, and thirdly, in
order to safeguard the ’reliability’ of the code words, the number of consec-
utive 0s at the beginning or end of the two code words joining the merging
word should be at least d(= 2). Using the extra merging words gives an
extra degree of freedom for suppressing the lf components, and experiments

www.manaraa.com

296 CHAPTER 11. DC-FREE RLL CODES

have shown that a welcome suppression of about 3 dB can be made.

11.5.2 EFMPlus

The Compact Disc (CD) and its extensions CD-ROM and CD-V, introduced
in the early 80s, have become a very successful medium for the distribution
and storage of audio, MPEG-1 video, and other digital information. Its
storage capacity, 680 MByte, is insufficient for graphics-intensive computer
applications and high-quality digital video programs.

An extension of the Compact Disc family, the Digital Versatile Disc
(DVD), is a new optical recording medium with a storage capacity seven
times higher than the conventional Compact Disc. Most of the storage
capacity increase is due to improved quality of the light source (red instead
of infra-red light) and the objective lens. The storage capacity of the DVD
is further enhanced by a complete redesign of the logical format of the
disc including a more powerful Reed-Solomon product code (RS-PC) and
recording code (EFMPlus). The details of the construction of the rate 8/16,
(2,10) EFMPlus code, a sliding-block (d, k) code with suppressed lf-content,
will be discussed in the next section.

Design outline

Under EFM rules, see Section 5.6.1, the data bits are translated eight at
a time into fourteen channel bits, with runlength parameters d = 2 and
k = 10. In this section we will detail a code with the same runlength
constraints as EFM, called EFMPlus1, having a 6% higher rate than classic
EFM. EFMPlus has been adopted in the industry standard of the DVD
as the channel modulation scheme. The most important design issues of
the DVD were that critical parameters such as lf-content and timing should
definitely not be compromised. Said parameters are critical as they affect
the servos and the timing recovery which are the Achilles’ heels of the optical
recording system.

EFMPlus is a rate 8/16, sliding-block code with the same runlength
parameters as EFM. Dc-control is performed with the surplus words that
leave each encoder state. The ACH algorithm is run for a code size, M ,
that is as large as possible within the complexity constraints. The additional
source inputs (> 256) that are made possible in this fashion are employed
as alternatives for dc-control (see next section for more details). The com-
plexity of a sliding-block encoder and decoder is essentially governed by
the maximum value (weight) of an element of the approximate eigenvector

1The name EFMPlus is slightly confusing as the acronym EFM stands for Eight to
Fourteen Modulation. In EFMPlus there is no such mapping, but the dk constraints are
the same as in classic EFM.

www.manaraa.com

11.5. EFM REVISITED 297

(see Section 7.4, page 170). Table 11.8 shows the maximum value (weight)
max{vi} as a function of the code size M . In addition we listed the param-
eter η, which denotes the relative redundancy, η = 1 − 1

16
log2M/C(2, 10).

Note that the maximum code size that can be accommodated for n = 16,
d = 2 and k = 10 is 406.

For the given code parameters we note that for code size M < 352 the
maximum weight is two. A one-round split is sufficient to construct the
encoder. We also notice in Table 11.8 that the maximum weight grows very
rapidly with mounting code size M . After many trials and considering the
diminishing returns, it was decided for a code size M = 351. After an initial
merging of the k + 1 = 11 states we obtain a 3-state FSM. After a single
state split, this 3-state FSM can be transformed into a 4-state encoder.
Each of the four states of the EFMPlus encoder is characterized by the
type of words that enter, or leave, the given state. The states and word sets
are characterized by

• Words entering State 1 end with m trailing ’zero’s, m ∈ {0, 1};
• Words entering State 2 or 3 end withm trailing ’zero’s,m ∈ {2, . . . , 5};
• Words entering State 4 end with m trailing ’zero’s, m ∈ {6, . . . , 9}.

The words leaving the states are chosen in such a way that the concatenation
of words entering a state and those leaving that state obey the (d = 2, k =
10) channel constraints. For example, words leaving State 1 start with a
runlength of at least two and at most nine ’zero’s.

Table 11.8: Code size M , efficiency η = 1−R/C(2, 10) and max{vi}.
M η max{vi}
351 0.0246 2
353 0.0237 3
354 0.0232 4
389 0.0075 8
391 0.0067 10
397 0.0041 13
398 0.0037 17
406 0.0000 102

In an analogous manner, we conclude that words leaving State 4 start with
at most one ’zero’. Obviously, the sets of words leaving State 1 or 4 have
no words in common. Words emerging from State 2 and 3 comply with the
above runlength constraints, but they also comply with other conditions.

www.manaraa.com

298 CHAPTER 11. DC-FREE RLL CODES

Words leaving State 2 have been selected such that the first (msb) bit, x1,
and the thirteenth bit, x13, are both equal ’zero’. Words leaving State 3
have x1x13 6= 00. Any walk through the graph, stepping from state to state,
produces a (d = 2, k = 10)-constrained sequence by reading the words
tagged to the edges that connect the states. With a computer it can easily
be verified that from each of the states at least 351 words are leaving. An
encoder is constructed by assigning a source word to each of the 351 edges
that leave each state. The encoder requires accommodation for only 256
source words. The excess, 95, words have been used for suppressing the
low-frequency power (see next section), the dc-control.

The encoder graph is defined in terms of three sets: the inputs, the out-
puts and the states, and two logical functions: the output function and the
next-state function. The specific codeword, xt, transmitted by the encoder
at instant t is a function of the source word bt that enters the encoder, but
depends further on the particular state, st, of the encoder. Similarly, the
”next” state at instant t+1 is a function of xt and st. The output function
h(.) and the next-state function g(.) can be succinctly written as

xt = h(st,bt)

st+1 = g(st, bt).

Both the output function h(.) and the next-state function g(.) are described
by four lists with 351 entries. A part of the output function and the next-
state function is listed in Table 11.9. More details can be found in [156].

Table 11.9: Part of the EFMPlus coding table.

i h(i, 1), g(i, 1) h(i, 2), g(i, 2) h(i, 3), g(i, 3) h(i, 4), g(i, 4)
0 0010000000001001,1 0100000100100000,2 0010000000001001,1 0100000100100000,2
1 0010000000010010,1 0010000000010010,1 1000000100100000,3 1000000100100000,3
2 0010000100100000,2 0010000100100000,2 1000000000010010,1 1000000000010010,1
3 0010000001001000,2 0100010010000000,4 0010000001001000,2 0100010010000000,4
4 0010000010010000,2 0010000010010000,2 1000000100100000,2 1000000100100000,2
5 0010000000100100,2 0010000000100100,2 1001001000000000,4 1001001000000000,4
6 0010000000100100,3 0010000000100100,3 1000100100000000,4 1000100100000000,4
7 0010000001001000,3 0100000000010010,1 0010000001001000,3 0100000000010010,1
8 0010000010010000,3 0010000010010000,3 1000010010000000,4 1000010010000000,4

Table 11.9 has a column that describes the source (input) word i by an
integer between ’0’ and ’255’. The table also shows h(i, s) the 16-bit output
to a particular input i when the encoder is in one of the four states s. A
’one’ means, as in EFM, a transition pit/land or land/pit, while a ’zero’
means the absence of such a transition. The 3rd, 5th, 7th, and 9th columns
show the next state function g(i, s). For example, let the encoder graph be

www.manaraa.com

11.5. EFM REVISITED 299

initialized at State 1, and let further the source sequence be ’8’, ’3’, ’4’. The
response to input ’8’, while being in State 1, equals h(8, 1) = (see Table 11.9)
’0010000010010000’. The new state becomes g(8, 1) = 3. As a result, the
response to input ’3’, while now being in State 3, is ’0010000001001000’. In
the next clock cycle, the encoder state becomes g(3, 3) = 2. From State 2
with the input equal to ’4’ we find from the table that the corresponding
output is h(4, 2) =’0010000010010000’.

The decoder translates 16-bit words into 8-bit data words. It does not
suffice to look at the 16-bit word only, the decoder must also look at symbols
at positions 1 and 13 of the upcoming codeword, namely

bt = h−1(xt, xt+1,1xt+1,13).

Thus decoding of the new code is done by a logic array that translates
(16+2) channel bits into 8 bits. In contrast, under EFM rules, it suffices to
observe 14 of the 17 channel bits that constitute an EFM codeword.

The encoder defined above can freely accommodate 351 source words. In
order to make it possible to use a unique 26-bit sync word, seven candidate
words were barred, leaving a code size of 344. As we only need accommoda-
tion for 256 source words, the surplus words can be exploited for minimizing
the power at low frequencies. The suppression of low-frequency components,
or dc-control, is done by controlling the running digital sum (RDS). The 88
surplus words are used as an alternative channel representation of the source
words 0,...,87. The full encoder is described by two tables called main and
substitute table, respectively. The source words 0,...,87 can be represented
by the designated entries of the main table or alternatively by the entries
of the substitute table. For source words 0,...,87 the encoder opts for that
particular representation from the main table or the substitute table that
minimizes the absolute value of the RDS.

The DVD standard imposes an extra rule for dc-control [318, 157], called
state swapping. If the encoder is in State 1, the encoder may use the code-
word h(i, 4), 0 ≤ i ≤ 255, as an alternative for dc-control, provided the run-
length constraints are not violated. Similarly, if the encoder is in State 4, it
may use the codeword h(i, 1), 0 ≤ i ≤ 255, as alternative. In other words,
codewords pertaining to States 1 and 4, i.e. h(i, 1) and h(i, 4), both in the
main and substitute tables, may be used as alternatives for dc-control, pro-
vided the runlengths constraints are strictly obeyed. This so-called state
swapping of states 1 and 4 is allowed as decoding can be accomplished un-
ambiguously (only codewords in states 1 and 3 are used for discriminating
multiple code words). The state swapping method offers a 2 dB extra re-
duction of the lf power (see also Table 11.10). Vasic et al. presented a
modification of the dc-control algorithm of EFMPlus using a look-ahead
strategy [329].

www.manaraa.com

300 CHAPTER 11. DC-FREE RLL CODES

11.5.3 Alternatives to EFM schemes

It is of some interest to consider the possibility of redesigning the EFM
code, and its variants of various codes rates and to compare the spectral
performance.

The EFM code was designed in 1980 before efficient design algorithms,
such as ACH and so on, were developed. A second handicap of the EFM
design is that at the time of its conception, every gate used for decoding
was one too many.2 Let us now for academic interest ignore for the time
being the complexity issue, and start from scratch. Essentially EFMPlus is
a redesign of EFM with a rate 8/16 instead of 8/17. Decoding of EFMPlus
requires 1000 instead of the 52 gates of EFM.

An obvious alternative of the rate 8/16, EFMPlus code would have been
EFM with two instead of three merging bits. The dc-content of the alter-
native code, EFM16a, (the name we shall use for the code with two instead
of three merging bits), can easily be assessed by computer simulation, and
the results are shown in Table 11.10. The dc-content can be reduced signif-
icantly by a re-assignment of the various words that takes into account the
following observation. Observe, for example, that in EFM16a, the 16-bit
words ’0001000100001000’ and ’1001000100001000’ are alternative channel
representations. It can easily be verified that the disparity of both words
(after precoding, of course) is zero. This, in fact, means that the encoder
has no real option to increase or decrease the RDS with the transmission of
those codewords. Obviously, it would be much better if we could redesign
the code in such a way that as many source words as possible would have
channel representations of zero-disparity. Non-zero-disparity codewords of
opposite signs should be paired while zero-disparity codewords may remain
single.

It is a straightforward exercise, using Gu & Fuja’s method (see Sec-
tion 5.5.1, page 111), to design a block code according to the above design
heuristic. Note that there is no need to rely on Construction 2, page 109.
We may construct a block-decodable code with a source size of 260 instead
of 257 words. A typical result, note there are many possibilities, called
EFM16b, offers 8 dB, see Table 11.10, more reduction at the low-frequency
end than EFM16a. This is a significant improvement, in particular as the
only disadvantage is the extra gate count required for decoding. Note that
the EFM16b code requires a full decoding array of 16 bits instead of 14 bits
as in EFM16a. An advantage with respect to EFMPlus, which requires a
sliding-block decoder of length two, is the absence of error propagation. On

2Note that this requirement was not imposed for the encoding hardware, as it was
anticipated that there would be a very limited number of master and replication plants.
Who, at that time, could envisage that there would be EFM encoders in the households
in CD-R and CD-RW players as computer peripheral?

www.manaraa.com

11.5. EFM REVISITED 301

the other side of the balance, we have a 3 dB extra reduction of EFMPlus’
lf-content (see Table 11.10).

As 8/15 = 0.5333.., at least in theory, it is possible to construct a rate
8/15, (2,9) code, and many examples have been given in the literature. A
5-state, rate 8/15, (2,10) RLL code with decoder window equal to two has
been published by Li et al. [225]. The code presented by Li et al. does not
have the virtue of lf suppression. Alternatively, the rate 8/15, (2,14) EFM15
code [157] is an example of a dc-free RLL code. The encoder is a 4-state
finite-state machine, where residual codewords are, as in EFMPlus, used as
alternatives channel representations to lower the lf-content. An alternative
rate 8/15 construction is possible with, for example, Construction 3, see
Section 5.8.2, page 128. In Construction 3 we require, in contrast with
Construction 2, where d = 2 merging are required, d − 1 = 1 merging
bit. We could, in principle, deploy the same 14-bit word assignment as in
classical EFM. For an example of such a assignment, the reader is referred
to the US Patent granted to Tanaka et al. [317].

Table 11.10: Performance of EFM-like codes.

Code H(10−4fc) (dB) Sum var. R Remark
EFM -33 16 8/17 Sec. 11.5.1
EFMPlus -30.5 19 8/16 Sec. 11.5.2
EFMPlus* -28.5 24 8/16 no state swap
EFM16a -20 66 8/16 2 merging bits
EFM16b -28 27 8/16 Sec. 11.5.3
EFM15 -9 220 8/15 -

EFM15, which is very similar to EFMPlus, has a codeword length of 15
bits. The code is a typical sliding-block code, it has four encoder states,
and it was constructed using the ACH algorithm after a single round of
state splitting. The number of words that can be accommodated depends
on the state, and is at most 270. This leaves at most 270-256=14 ”spare”
words that can be used for dc-control. Pairing of the alternative represen-
tations has been accomplished in such a way that the words that form a
pair differ in a single position, i.e., have unity Hamming distance. This has
the advantage that a) the decoding operation is simplified and b) that the
alternative representations have an odd or even number of ’one’s, which,
as was observed experimentally, has a beneficial effect upon the dc-control.
Further details, such as coding tables and so on, of EFM15 can be found in
the US Patent description [157].

Hayami [124] presented an alternative rate 8/15, EFM-like (2,10) code.
The encoder graph, found with a single round of state splitting, can be

www.manaraa.com

302 CHAPTER 11. DC-FREE RLL CODES

realized by a 7-state FSM. The performance in terms of lf suppression as
compared to other EFM-like schemes was not disclosed, and therefore not
added to the survey table 11.10. Hayami’s code does not use, as EFMPlus
and EFM15, a main and a substitute table, for representing specific source
words. It uses a state-swapping technique, where, if the dk constraints
permit and decoding can be accomplished unambiguously, codewords can
be taken from a different state than the current one. This state-swapping
procedure can be seen as a generalization of the 1-4 state swapping, which is
part of the EFMPlus standard, see Section 11.5.2. Shim & Won presented
a rate 8/15, (2,12) code, which is very similar to EFMPlus [298].

11.5.4 Performance of EFM-like coding schemes

The spectral performance of the various members of the EFM family has
been assessed by computer simulation. The outcomes of the simulations
have been collected in Table 11.10. The lf-suppression, as presented in
Table 11.10, is measured at 10−4fc, where the channel bit frequency fc = 1
Hz. If we wish to compare coding schemes of different rate it is standard
practice to compare the lf-suppression at, say, 0.0001 times the user bit
frequency fb.

10

20

30

 0.5

10

20

30

 0.5 0.55

0.45
Capacity C(2, 10, N)

S
um

 V
ar

ia
nc

e

N=29

N=25

N=21

N=17

N=15

N=13
N=11

C(2,10,oo)

o
EFM

o
EFMPlus

Figure 11.7: Sum variance of maxentropic DCRLL sequences with pa-
rameters d = 2 and k = 10 and the digital sum variation N as a parame-
ter. As a comparison we plotted the rate and sum variance of EFM and
EFMPlus.

www.manaraa.com

11.5. EFM REVISITED 303

As the frequency 10−4fc Hz is assumed to be in the range of frequencies,
where the spectrum H(fc) has a parabolic shape, the lf-suppression at
10−4fb can be found by multiplying the lf-suppression measured at 10−4fc
by R3. For example, let R = 1/2, then we have to subtract 3 × 3.1 =
9.3 dB from the numbers shown in Table 11.10 to obtain the lf-suppression
at 10−4fb, where fb = 1 Hz. A comparison of the properties of sequences
generated under the rules of EFM and EFMPlus with those of maxentropic
sequences is shown in Figure 11.7. As we can observe, theory predicts there
is quite some room for improvements. For codes of the same rate as EFM
and EFMPlus we could, in theory, construct codes that generate sequences
with a factor of three smaller sum variance or alternatively a 10 dB extra
lf-content suppression. If, on the other hand, we stipulate that the sum
variance, and thus the lf-content of EFMPlus is adequate, we may conclude
from Figure 11.7 that a code of rate 0.53 (≈ 8/15) is possible having the
sum variance of EFM. The performance of the rate 8/15, code, EFM15 [157],
listed in Table 11.10, is a far cry from the theoretical bound [44].

Other EFM-like codes have been presented by Roth [291]. Braun et
al. [45] presented coding schemes using long block codes with enumerative
coding, as discussed in Chapter 6, that are very close to the predicted
maxentropic performance. The typical codeword length in his construction
is about 1000 bits, and the hardware required for encoding and decoding is
about 5kB.

www.manaraa.com

304 CHAPTER 11. DC-FREE RLL CODES

www.manaraa.com

Chapter 12

Further Reading

There are, to my best knowledge, no textbooks that deal, in a whole, with
the theory and practice of coding techniques for the optical and magnetic
recording channel, which, by the way, is one of the reasons to write this
one. In the past thirty years or so there has grown a staggering literature
in this field, but most of the information available is sketchy and is widely
dispersed.

There are, however, excellent chapters of books and survey papers in the
literature available. Notable is the very early survey paper by Kobayashi
in 1971 [208]. Other examples are Chapter 20 by Marcus, Roth & Siegel in
The Handbook of Coding Theory [236], the survey paper by Immink, Siegel
& Wolf [167], which commemorates the 50th anniversary of Shannon’s land-
mark paper, Patel’s chapter in [244], and Immink’s chapter in [41] provide
a state of the art description of coding techniques for the recording chan-
nel, respectively. The other chapters in the books mentioned describe the
physical context of optical and magnetic recording. Gregory [115] furnishes
a comprehensive case study, with emphasis on the signal processing, of the
4:2:2, or D1 format, digital video tape recorder (VTR). The classical work
of Cattermole [53] on line coding provides a historical background on dc-
balanced and other codes.

The July 1983 issue of the International Journal of Electronics, the May
1991 issue of the IEEE Transactions on Information Theory, the January
1992 issue of the IEEE Journal on Selected Areas on Communications, and
the issue of the same Journal published in April 2001, are entirely devoted
to coding and signal processing of recording channels. At the end of this
chapter, the author assembled a list of books and survey papers that are
excellent sources for further study.

The above books and other publications are in the conventional academic
setting. An alternative source of information is offered by the patent liter-
ature. Note that many constructions of codes originate in the environment
of industrial laboratories, and, therefore, it may not be surprising that the

305

www.manaraa.com

306 CHAPTER 12. FURTHER READING

patent literature is an inexhaustible source of information on various cod-
ing ”methods and apparatuses”. The inventions filed are probably far more
numerous than anyone suspects who has not made a specialized study of
them. According to the European Patent Office, more than 80 percent of
man’s technical knowledge is described in the patent literature. Patents and
other technical articles complement each other. Papers published at con-
ferences will usually become available much earlier than reviewed articles
or patents. The review process of archival-quality articles usually takes two
years or so, and a patent application is published, ”disclosed”, 18 months
after the filing date of the first-filed counterpart patent application. Patents
often describe more complete implementation details and more variations
of an idea than do journal articles. The reading of patent descriptions is
therefore particularly recommended.

There are some difficulties to overcome when reading the patent liter-
ature, which are caused by the technical-legal character of the documents.
One of the difficulties is that a patent avoids the usage of every-day terms
and uses broader, generic names instead. This practice may give the impres-
sion that the patent attorney tries to disguise the subject of the invention.
However, the aim of the attorney is to cover as large a technical area as
possible. He does not want the scope of the patent to be limited to the
device having the every-day name, even though this was the device actually
invented, but he extends the patent to the much broader class having the
generic name. For example, a whistling kettle is in patent-legal parlance
”A device for heating a liquid, preferably water, provided with acoustic
signaling for indicating the attainment of the boiling temperature of said
liquid”.

A second difficulty that has seriously hampered the reading of the patent
literature was the difficulty of accessing the patent literature for researchers
who are not affiliated with industrial research. This has drastically changed
as, recently, many WEB sites were opened, where patent searches can be
conducted. For example, the site maintained by the European Patent Office
(EPO) with URL address ep.espacenet.com offers full (and free) text
copies and drawings of patents from essentially all countries that can easily
be downloaded. The US Patent Office (USPTO) maintains a very useful
web site at www.uspto.gov, where free searches and copies of US patents
and applications can be obtained.

12.1 Selected literature

H.N. Bertram, Theory of Magnetic Recording, Cambridge, UK, Cambridge
University Press, 1994.

R.E. Blahut, Principles and Practice of Information Theory, Addison Wes-

www.manaraa.com

12.1. SELECTED LITERATURE 307

ley, New York, 1987.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, and K.A.S.
Immink, Principles of Optical Disc Systems, Adam Hilger Ltd, Bristol and
Boston, 1985.

K.W. Cattermole, ’Principles of Digital Line Coding’, Int. J. Electron., vol.
55, pp. 3-33, July 1983.

S. Gregory, Introduction to the 4:2:2 Digital Video Tape Recorder, Pentech
Press, London, 1988.

K.A.S.Immink, ’A Survey of Codes for Optical Disk Recording’, IEEE J.
Select. Areas Commun., vol.19, no.4, pp.756–764, April 2001.

K.A.S. Immink, P.H. Siegel, and J.K. Wolf, ’Codes for Digital Recorders’,
IEEE Trans. Inform. Theory, vol. 44, pp. 2260-2299, Oct. 1998.

H. Kobayashi, ’A Survey of Coding Schemes for Transmission or Recording
of Digital Data’, IEEE Trans. Commun., vol. COM-19, pp. 1087-1099,
Dec. 1971.

D. Lind and B. Marcus, Symbolic Dynamics and Coding, Cambridge Uni-
versity Press, 1995.

B.H. Marcus, P.H. Siegel, and J.K. Wolf, ’Finite-state Modulation Codes
for Data Storage’, IEEE Journal on Selected Areas in Communications, vol.
10, no. 1, pp. 5-37, Jan. 1992

B.H. Marcus, R.M. Roth, and P.H. Siegel, ’Constrained Systems and Cod-
ing for Recording Channels’, in Handbook of Coding Theory, R. Brualdi, C.
Huffman, and V. Pless, Eds., Amsterdam, The Netherlands, Elsevier Press,
1996.

C.D. Mee and E.D. Daniel, Magnetic Recording, McGraw-Hill Book Com-
pany, New York, 1987.

P.H. Siegel, ’Recording Codes for Digital Magnetic Storage’, IEEE Trans.
Magn., vol. MAG-21, no. 5, pp. 1344-1349, Sept. 1985.

P.H. Siegel and J.K. Wolf, ’Modulation and Coding for Information Stor-
age’, IEEE Commun. Magazine, vol. 29, no. 12, pp. 68-86, Dec. 1991.

K.C. Pohlman, The Compact Disc Handbook, Madison, 1992.

J. Watkinson, The Art of Digital Audio, Focal Press, London, 1988.

www.manaraa.com

308 CHAPTER 12. FURTHER READING

J. Watkinson, The Art of Digital Video, Focal Press, London, 1990.

R.W. Wood, ’Magnetic Recording Systems’, Proceedings IEEE, vol. 74, pp.
1557-1569, Nov. 1986.

www.manaraa.com

Chapter 13

Author’s Biography

Kees A. Schouhamer Immink, obtained M.S. and Ph.D degrees at the Eind-
hoven University of Technology. He is president and founder of Turing
Machines Inc., and since 1995, he is an adjunct professor at the Institute
for Experimental Mathematics, Duisburg-Essen University, Germany. In
addition, he is affiliated with the National University of Singapore, and the
Data Storage Institute, Singapore.

He has contributed to the design and development of a wide variety of
consumer-type audio and video recorders such as the LaserVision video disc,
Compact Disc, Compact Disc Video, DAT, DV, DCC, DVD, and BluRay
Disc system. He holds about 50 issued and pending U.S. patents in various
fields.

Dr Immink received wide recognition for his contributions to the technolo-
gies of digital video, audio, and data recording. He was inducted into
the Consumer Electronics Hall of Fame, elected into the Royal Nether-
lands Academy of Sciences (KNAW), and named a Knight of the Order
of Orange-Nassau. He received an Emmy Award from the US National
Television Academy, IEEE Edison Medal, AES Gold and Silver Medals,
SMPTE Progress Medal, IEEE Masaru Ibuka Consumer Electronics Award,
the Golden Jubilee Award for Technological Innovation awarded by the
IEEE IT Society, the IEE Thomson Medal, and the SMPTE Poniatoff Gold
Medal. He was awarded fellowships of the IEEE, AES, SMPTE, and IEE.

He served the engineering community as president of the Audio Engineering
Society (AES), and as a governor of both the IEEE Consumer Electronics
Society and Information Theory Society. He was a member of the IEEE
Fellows Committee.

309

www.manaraa.com

310 CHAPTER 13. AUTHOR’S BIOGRAPHY

www.manaraa.com

311

www.manaraa.com

312 CHAPTER 13. AUTHOR’S BIOGRAPHY

www.manaraa.com

Bibliography

[1] K.A.S. Abdel-Ghaffar and J.H. Weber, ‘Constructing Efficient DC-
Free Runlength-Limited Block Codes for Recording Channels’, IEEE
Trans. Inform. Theory, vol. IT-46, no. 4, pp. 1599-1602, July 2000.

[2] R.L. Adler, D. Coppersmith, and M. Hassner, ’Algorithms for Sliding
Block Codes. An Application of Symbolic Dynamics to Information
Theory’, IEEE Trans. Inform. Theory, vol. IT-29, no. 1, pp. 5-22,
Jan. 1983.

[3] R.L. Adler, M. Hassner, and J. Moussouris, ‘Method and Apparatus
for Generating a Noiseless Sliding Block Code for a (1,7) Channel with
Rate 2/3’, US Patent 4,413,251, Nov. 1983.

[4] R.L. Adler, R.K. Brayton, and B.P. Kitchens, ’A Rate 1/3, (5,12)
RLL Code’, IBM Techn. Discl. Bul., vol. 27, pp. 4722-4724, 1985.

[5] R.L. Adler, R.K. Brayton, M. Hassner, and B.P. Kitchens, ’A Rate
2/3, (1,6) RLL Code’, IBM Techn. Discl. Bul., vol. 27, pp. 4727-4729,
1985.

[6] N. Alon, E.E. Bergmann, D. Coppersmith, and A.M. Odlyzko, ’Bal-
ancing Sets of Vectors’, IEEE Trans. Inform. Theory, vol. IT-34, no.
1, pp. 128-130, Jan. 1988.

[7] R.B. Ash, Information Theory, Inter-science Publishers, New York,
1965.

[8] J.J. Ashley, ’Capacity Bounds for Channels with Spectral Nulls’, IBM
Research Reports RJ 5676, 1987.

[9] ——-, ’A Linear Bound for Sliding Block Decoder Window Size’, IEEE
Trans. Inform. Theory, vol. IT-34, no.3, pp. 389-399, May 1988.

[10] J.J. Ashley, M. Hilden, P. Perry, and P.H. Siegel, ’Correction to ”A
Note on the Shannon Capacity of Runlength-Limited Codes”, IEEE
Trans. Inform. Theory, vol. IT-39, no. 3, pp. 1110-1112, May 1993.

313

www.manaraa.com

314 BIBLIOGRAPHY

[11] J.J. Ashley and B.H. Marcus, ’Canonical Encoders for Sliding-block
Decoders’, SIAM J. Discrete Math., vol. 8, pp. 555-605, 1995.

[12] ——-, ’Two-Dimensional Low-Pass Filtering Codes’, IEEE Trans.
Commun., vol. 46, no. 6, pp. 724-7, 1998.

[13] J.J. Ashley and P.H. Siegel, ‘A Note on the Shannon Capacity of Run-
Length-Limited Codes’, IEEE Trans. Inform. Theory, vol. IT-33, no.
4, pp. 601-605, July 1987.

[14] J.J. Ashley, R. Karabed, and P.H. Siegel, ’Complexity and Sliding-
block Decodability’, IEEE Trans. Inform. Theory, vol. IT-42, no. 6,
pp. 1925-1947, Nov. 1996.

[15] ——-, ’A Generalized State-Splitting Algorithm’, IEEE Trans. In-
form. Theory, vol. IT-43, no. 4, pp. 1326-1338, July 1997.

[16] J.J. Ashley, B.H. Marcus, and R.M. Roth, ’Construction of Encoders
with Small Decoding Look-ahead for Input-constrained Channels’,
IEEE Trans. Inform. Theory, vol. IT-41, no. 1, pp. 55-76, Jan. 1995.

[17] J.J. Ashley and B.H. Marcus, ’Time-Varying Encoders for Con-
strained Systems: An Approach to Limiting Error Propagation’, IEEE
Trans. Inform. Theory, vol. IT-46, no. 3, pp. 1038-1043, May 2000.

[18] P.M. Aziz, S. Surendran, and P.W. Kemsey, ’Generalized rate N/(N+
1) codes’, Electronics Letters, vol. 35, pp. 710-712, April 1999.

[19] P.M. Aziz, P.W. Kemsey, and S. Surendran, ’Rate 16/17, (0,5) Mod-
ulation Code Apparatus and Method for Partial Response Magnetic
Recording Channels, US Patent 6,046,691, April 2000.

[20] ——-, ’Rate 24/25, (0,9) Code Method and System for PRML Record-
ing Channels’, US Patent 6,130,629, Oct. 2000.

[21] P.M. Aziz, M. Pervez, I.M. Hughes, P.W. Kempsey, and S. Surendran,
’General rate N/(N +1), (0, G) Code Construction for Data Coding’,
US Patent 6,204,781, March 2001.

[22] J.L.E. Baldwin, ’Method and Apparatus for Processing Digital Signals
prior to Recording’, US Patent 4,851,837, July 1989.

[23] S. Al-Bassam and B. Bose, ’On Balanced Codes’, IEEE Trans. Inform.
Theory, vol. IT-36, no. 2, pp. 406-408, March 1990.

[24] R.L. Beckenhauer and W.J. Schäuble, ’Sync Patterns Encoding Sys-
tem for Run-Length Limited Codes’, US Patent 4,146,909, March
1979.

www.manaraa.com

BIBLIOGRAPHY 315

[25] G.F.M. Beenker and K.A.S. Immink, ’A Generalized Method for En-
coding and Decoding Runlength-Limited Binary Sequences’, IEEE
Trans. Inform. Theory, vol. IT-29, no. 5, pp. 751-754, Sept. 1983.

[26] W.R. Bennett, ’Statistics of Regenerative Digital Transmission’, Bell
Syst. Tech. J., vol. 37, pp. 1501-1542, Nov. 1958.

[27] M. Berkoff, ’Waveform Compression in NRZI Magnetic Recording’,
Proc. IEEE, vol. 52, pp. 1271-1272, Oct. 1964.

[28] J. Berstel and D. Perrin, Theory of Codes, Academic Press, Orlando,
1985.

[29] H.N. Bertram, Theory of Magnetic Recording, Cambridge, UK, Cam-
bridge University Press, 1994.

[30] E. Biglieri and G. Caire, ’Power Spectrum of Block-Coded Modula-
tion’, IEEE Trans. Commun.,, vol. COM-42, no. 2/3/4, pp. 1580-
1585, Feb/Mar/Apr. 1994.

[31] G. Bilardi, R. Padovani, and G.L. Pierobon, ’Spectral Analysis of
Functions of Markov Chains with Applications’, IEEE Trans. Com-
mun., vol. COM-31, no. 7, pp. 853 - 861, July 1983,

[32] J.A. Bixby and R.A. Ketcham, ’QP, an Improved Code for High Den-
sity Digital Recording’, IEEE Trans. Magn., vol. MAG-15, pp. 1465-
1467, Nov. 1979.

[33] R.E. Blahut, Principles and Practice of Information Theory, Addison
Wesley, New York, 1987.

[34] I.F. Blake, ’The Enumeration of Certain Run Length Sequences’, In-
formation and Control, vol. 55, pp. 222-237, 1982.

[35] M. Blaum, P.H. Siegel, G.T. Sincerbox, and A. Vardy, ’Method and
Apparatus for Modulation of Multi-Dimensional Data in Holographic
Storage’, US Patent 5,510,912, April 1996.

[36] ——-, ’Method and Apparatus for Modulation of Multi-Dimensional
Data in Holographic Storage’, US Patent 5,727,226, March 1998.

[37] W.G. Bliss, ’Circuitry for Performing Error Correction Calculations
on Baseband Encoded Data to Eliminate Error Propagation’, IBM
Techn. Discl. Bul., vol. 23, pp. 4633-4634, 1981.

[38] ——-, ’An 8/9 Rate Time-Varying Trellis Code for High Density Mag-
netic Recording’, IEEE Trans. Magn., vol. MAG-33, pp. 2746-2748,
1997.

www.manaraa.com

316 BIBLIOGRAPHY

[39] S.M.C. Borgers, E. de Niet, and P.H.N de With, ’An Experimental
Digital VCR with 40mm Drum, Single Actuator and DCT-based Bit-
Rate Reduction’, IEEE Trans. Consumer Electr., vol. CE-34, pp. 597-
605, Aug. 1988.

[40] B.S. Bosik, ’The Spectral Density of a Coded Digital Signal’, Bell
Syst. Tech. J., vol. 51, pp. 921-932, April 1972.

[41] G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, and
K.A.S. Immink, Principles of Optical Disc Systems, Adam Hilger Ltd,
Bristol and Boston, 1985.

[42] F.K. Bowers, ’Pulse Code Transmission System’, US Patent 2,957,947,
Oct. 1960.

[43] V. Braun, ’On Modulation, Coding and Signal Processing for Opti-
cal and Magnetic Recording Systems’, Doctoral Thesis, Institute for
Experimental Mathematics, University of Essen, Fortschritt-Berichte
VDI, Reihe 10, Nr. 504, VDI-Verlag, Dusseldorf, 1997.

[44] V. Braun and. A.J.E.M. Janssen, ’On the Low-frequency Suppression
Performance of DC-free Runlength-limited Modulation Codes’, IEEE
Trans. Consumer Electr.,, vol. CE-42, no.4, pp. 939-945, Nov. 1996.

[45] V. Braun and K.A.S. Immink, ’An Enumerative Coding Technique
for DC-free Runlength-Limited Sequences’, IEEE Trans on Commu-
nications, vol. 48, pp. 2024-2031, Dec. 2000.

[46] N.J. Calkin and H.S. Wilf, ’The Number of Independent Sets in a
Grid Graph’, SIAM J. Discr. Math., vol. 11, pp. 54-60, Feb. 1998.

[47] J. Campello, B. Marcus, R. New, and B. Wilson, ’Constrained Sys-
tems with Unconstrained Positions’, IEEE Trans. Inform. Theory, vol
IT-48, pp. 866-879, 2002.

[48] G.L. Cariolaro and G.P. Tronca, ’Spectra of Block Coded Digital Sig-
nals’, IEEE Trans. Commun., vol. COM-22, pp. 1555-1563, Oct. 1974.

[49] G.L. Cariolaro, G.L. Pierobon, and G.P Tronca, ’Analysis of Codes
and Spectra Calculations’, Int. J. Electron., vol. 55, pp. 35-79, no. 1,
1983.

[50] R.O. Carter, ’Low-disparity Binary Coding System’, Electronics Let-
ters, vol. 1, pp. 65-68, May 1965.

[51] ——-, ’Low-disparity Binary Coding System’, US Patent 3,405,235,
Oct. 1968.

www.manaraa.com

BIBLIOGRAPHY 317

[52] K.W. Cattermole, Principles of Pulse Code Modulation, Iliffe Books
Ltd, London, 1969.

[53] ——-, ’Principles of Digital Line Coding’, Int. J. Electron., vol. 55,
pp. 3-33, July 1983.

[54] K.W. Cattermole and J.J. O’Reilly, Problems of Randomness in Com-
munication Engineering, vol. 2, Pentech Press, London, 1984.

[55] J.K. Cavers and R.F. Marchetto, ’A New Coding Technique for Spec-
tral Shaping of Data’, IEEE Trans. Commun., vol. COM-40, no. 9,
pp. 1418-1422, 1992.

[56] P. Chaichanavong and B. Marcus, ’Optimal Block-Type-Decodable
Encoders for Constrained Systems’, IEEE Trans. Inform. Theory, vol.
IT-49, no. 5, pp. 1231-1250, May 2003.

[57] R. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, ’A
PRML System for Digital Magnetic Recording’, IEEE Journal Se-
lected Areas in Communications , vol. 10, pp. 38-56, Jan. 1992.

[58] R. Cideciyan, E. Eleftheriou, B.H. Marcus, D.S. Modha, ’Maximum
Transition Run Codes for Generalized Partial Response Channels’,
IEEE Journal Selected Areas in Communications , vol. 19, pp. 619-
634, April 2001.

[59] T.M. Chien, ’Upper Bound on the Efficiency of Dc-constrained Codes’,
Bell Syst. Tech. J., vol. 49, pp. 2267-2287, Nov. 1970.

[60] W. Coene, ’Combi-codes for Dc-free Runlength-Limited Coding’,
IEEE Trans. Consumer Electr., vol. CE-46, no.4, pp. 1082-1087, Nov.
2000.

[61] M. Cohn, G.V. Jacoby, and C.A. Bates III, ’Data Encoding Method
and System Employing Two-thirds Code Rate with Full Word Look-
ahead’, US Patent 4,337,458, June 1982.

[62] M. Cohn and G.V. Jacoby, ’Run-Length Reduction of 3PM Code via
Look-Ahead Technique’, IEEE Trans. Magn., vol. MAG-18, pp. 1253-
1255, Nov. 1982.

[63] J.D. Coker. D.T. Flynn, R.L. Galbraith, and T.C. Truax, ’Method
and Apparatus for Implementing a Set Rate Code for Data Channels
With Alternate 9-bit Codewords and 8-bit Codewords’, US Patent
5,784,010, July 1998.

www.manaraa.com

318 BIBLIOGRAPHY

[64] G. Copeland and B. Tezcan, ’Disparity and Transition Density Con-
trol System and Method’, US Patent 6,304,196, Oct. 2001.

[65] D. Coppersmith and B.P Kitchens, ’Run-length Limited Code without
DC Level’, US Patent 4,675,650, June 1987.

[66] T.M. Cover, ’Enumerative Source Coding’, IEEE Trans. Inform. The-
ory, vol. IT-19, no. 1, pp. 73-77, Jan. 1973.

[67] S. Datta and S.W. McLaughlin, ’An Enumerative Method for
Runlength-Limited Codes: Permutation Codes’, IEEE Trans. Inform.
Theory, vol. IT-45, no. 6, pp. 2199-2204, Sept. 1999.

[68] ——-, ’Optimal Codes for M -ary Runlength-Constrained Channels’,
IEEE Trans. Inform. Theory, vol. IT-47, no. 5, pp. 2069-2078, July
2001.

[69] N.R. Davie, M.A. Hassner, T.D. Howell, R. Karabed, and P.H. Siegel,
’Method and Apparatus for Asymmetrical RLL Coding’, US patent
4,949,196, Aug. 1990.

[70] R.H. Deng and M.A. Herro, ’DC-Free Coset Codes’, IEEE Trans.
Inform. Theory, vol. IT-34, no. 4, pp. 786-792, July 1988.

[71] A.J.M. Denissen and L.M.G.M. Tolhuizen, ’Apparatus and Methods
for Use in Transmitting and Receiving a Digital Signal, and a Record
Carrier Obtained by a Transmission Apparatus or Method’, US Patent
5,671,236, Sept. 1997.

[72] J.S. Eggenberger and P. Hodges, ’Sequential Encoding and Decod-
ing of Variable Word Length, Fixed Rate Data Codes’, US Patent
4,115,768, 1978.

[73] J.S. Eggenberger and A.M. Patel, ’Method and Apparatus for Imple-
menting Optimum PRML Codes’, US Patent 4,707,681, Nov. 1987.

[74] E. Eleftheriou and R.D. Cideciyan, ’On Codes Satisfying Mth-Order
Running Digital Sum Constraints’, IEEE Trans. Inform. Theory, vol.
IT-37, no. 5, pp. 1294-1313, Sept. 1991.

[75] T. Etzion, ’Cascading Methods for Runlength-Limited Arrays’, IEEE
Trans. Inform. Theory, vol. IT-43, no. 1, pp. 319-324, Jan. 1997.

[76] I.J. Fair, W.D. Gover, W.A. Krzymien, and R.I. MacDonald, ’Guided
Scrambling: A New Line Coding Technique for High Bit Rate Fiber
Optic Transmission Systems’, IEEE Trans. Commun., vol. COM-39,
no. 2, pp. 289-297, Feb. 1991.

www.manaraa.com

BIBLIOGRAPHY 319

[77] I.J. Fair, Q. Wang, and V.K. Bhargava, ’Polynomials for Guided
Scrambling Line Codes’ IEEE Journal on Selected Areas in Commu-
nications, vol.13,, pp. 499-509, April 1995.

[78] ——-, ’Characteristics of Guided Scrambling Encoders and Their
Coded Sequences’, IEEE Trans. Inform. Theory, vol. IT-43, pp. 342-
347, Jan. 1997.

[79] J.L. Fan and A.R. Calderbank, ’A Modified Concatenated Coding
Scheme with Applications to Magnetic Recording’, IEEE Trans. In-
form. Theory, vol. IT-44, pp. 1565-1574, July 1998.

[80] J.L. Fan, B.H. Marcus, and R.M. Roth, ’Lossless Sliding Block Com-
pression of Constrained Systems’, IEEE Trans. Inform. Theory, vol.
IT-46, pp. 624-633, March 2000.

[81] W. Feller, An Introduction to Probability Theory and Its Applications,
Volume I, Wiley and Sons Inc., New York, 1959.

[82] K.D. Fisher and J. Fitzpatrick, ’Rate 24/25 Modulation Code for
PRML Recording Channels’, US Patent 5,757,294, May 1998.

[83] B. Fitinghof and M. Mansuripur, ’Method and Apparatus for
Implementing Post-Modulation Error Correction Coding Scheme,
US Patent 5,311,521, May 1994.

[84] J. Fitzpatrick and K.J. Knudson, ’Rate 16/17, (d = 0, G = 6/I =
7) Modulation Code for a Magnetic Recording Channel’, US Patent
5,635,933, June 1997.

[85] S. Forchhammer and J. Justesen, ’Bounds on the Capacity of Con-
strained Two-dimensional Codes’, IEEE Trans. Inform. Theory , vol.
IT-46, pp. 2659-2666, Nov. 2000.

[86] K. Forsberg and I.F. Blake, ’The Enumeration of (d, k) Sequences’,
Proc. 26th Allerton Conf. on Communications, Control, and Comput-
ing, Montecelli, pp. 471-472, Sept. 1988.

[87] P.A. Franaszek, ’Coding for Constrained Channels: A Comparison of
Two Approaches’, IBM J. Res. Develop., vol. 33, no. 6, 602-608, Nov.
1989.

[88] ——-, ’Apparatus for Encoding Unconstrained Data onto a (1,7) For-
mat with Rate 2/3, US Patent 4,488,142, Dec. 1984.

[89] ——-, ’Sequence-State Methods for Run-length-limited Coding’, IBM
J. Res. Develop., vol. 14, pp. 376-383, July 1970.

www.manaraa.com

320 BIBLIOGRAPHY

[90] ——-, ’Run-length-limited Variable Length Coding with Error Prop-
agation Limitation’, US Patent 3,689,899, Sept. 1972.

[91] ——-, ’On Future-dependent Block Coding for Input-restricted Chan-
nels’, IBM J. Res. Develop., vol. 23, pp. 75-81, 1979.

[92] ——-, ’Synchronous Bounded Delay Coding for Input-restricted
Channels’, IBM J. Res. Develop., vol. 24, 43-48, 1980.

[93] ——-, ’A General Method for Channel Coding’, IBM J. Res. Develop.,
vol. 24, pp. 638-641, 1980.

[94] ——-, ’Construction of Bounded Delay Codes for Discrete Noiseless
Channels’, IBM J. Res. Develop., vol. 26, no. 4, pp. 506-514, July
1982.

[95] ——-, ’On Synchronous Variable-Length Coding for Discrete Noiseless
Channels’, Information and Control, vol. 15, pp. 155-164, 1969.

[96] ——-, ’Sequence-State Encoding for Digital Transmission’, Bell Syst.
Tech. J., vol. 47, pp. 143-157, Jan. 1968.

[97] J.N. Franklin and J.R. Pierce, ’Spectra and Efficiency of Binary Codes
without DC’, IEEE Trans. Commun., vol. COM-20, pp. 1182-1184,
Dec. 1972.

[98] L.E. Franks, Signal Theory, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1969.

[99] L.J. Fredrickson, ’A (d, k, c) = (0, 3, 5/2) Rate 8/10 Modulation Code’,
IEEE Trans. Magn., vol. MAG-26, no. 5, pp. 2318-2320, Sept. 1990.

[100] ——-, ’On the Shannon Capacity of DC- and Nyquist-Free Codes’,
IEEE Trans. Inform. Theory, vol. IT-37, no. 3, pp. 918-923, May
1991.

[101] C.V. Freiman and A.D. Wyner, ’Optimum Block Codes for Noiseless
Input Restricted Channels’, Information and Control, vol. 7, pp. 398-
415, 1964.

[102] G. Freiman and S. Litsyn, ’Asymptotically Exact Bounds on the Size
of High-Order Spectral-Null Codes’, IEEE Trans. Inform. Theory,
vol. IT-45, no. 6, pp. 1798-1807, Sept. 1999.

[103] C.A. French and J.K. Wolf, ’Alternative Modulation Codes for the
Compact Disc’, IEEE Trans. Consumer Electronics, vol. CE-34, no.
4, pp. 908-913, Nov. 1988.

www.manaraa.com

BIBLIOGRAPHY 321

[104] S. Fukuda, Y. Kojima, Y. Shimpuku, and K. Odaka, ’8/10 Modula-
tion Codes for Digital Magnetic Recording’, IEEE Trans. Magn., vol.
MAG-22, no. 5, pp. 1194-1196, Sept. 1986.

[105] P. Funk, ’Run-length-limited Codes with Multiple Spacing’, IEEE
Trans. Magn., vol. MAG-18, no. 2, pp. 772-775, March 1982.

[106] A. Gabor, ’Adaptive Coding for Self-Clocking Recording’, IEEE
Trans. Electronic Computers, vol. EC-16, pp. 866-868, Dec. 1967.

[107] P. Galko and S. Pasupathy, ’The Mean Power Spectral Density of
Markov Chain Driven Signals’, IEEE Trans. Inform. Theory, vol. IT-
27, no. 6, pp. 746-754, Nov. 1981.

[108] R.G. Gallager, Information Theory and Communication, New York,
Wiley, 1968.

[109] F.R. Gantmacher, Matrix Theory, New York: Chelsea, 1960.

[110] A. Gallopoulos, C. Heegard, and P.H. Siegel, ’The Power Spectrum of
Run-Length-Limited Codes’, IEEE Trans. Commun., vol. COM-37,
pp. 906-917, Sept. 1989.

[111] E.N. Gilbert, ’Synchronization of Binary Messages’, IEEE Trans. In-
form. Theory, vol. IT-6, no. 5, pp. 470-477, Sept. 1960.

[112] S.W. Golomb, Shift Register Sequences, Holden-Day, Inc., San Fran-
cisco, 1967.

[113] E. Gorog, ’Redundant Alphabets with Desirable Frequency Spectrum
Properties’, IBM J. Res. Develop., vol. 12, pp. 234-241, May 1968.

[114] M.D. Gray, ’Variable Rate Bit Inserter for Digital Data Storage’,
US Patent 5,815,514, Sept. 1998.

[115] S. Gregory, Introduction to the 4:2:2 Digital Video Tape Recorder,
Pentech Press, London, 1988.

[116] L.J. Greenstein, ’Spectrum of a Binary Signal Block Coded for DC
Suppression’, Bell Syst. Tech. J., vol. 53, pp. 1103-1126, July 1974.

[117] J.M. Griffiths, ’Binary Code Suitable for Line Transmission’, Elec-
tronics Letters, vol. 5, pp. 79-81, 1969.

[118] ——-, ’Low Disparity Binary Codes’, US Patent 3,631,471, Dec. 1971.

[119] J. Gu and T. Fuja, ’A New Approach to Constructing Optimal Block
Codes for Runlength-Limited Channels’, IEEE Trans. Inform. The-
ory, vol. IT-40, no. 3, pp. 774-785, 1994.

www.manaraa.com

322 BIBLIOGRAPHY

[120] L.J. Guibas and A.M. Odlyzko, ’Maximal Prefix-Synchronized Codes’,
SIAM J. Applied Math., vol. 35, no. 2, pp. 401-418, 1978.

[121] N.H. Hansen, ’A Head-Positioning System using Buried Servos’, IEEE
Trans. Magn., vol. MAG-17, no. 6, pp. 2735-2738, Nov. 1981.

[122] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Num-
bers, 5th Ed., Oxford, England: Claredon Press, 1979.

[123] M.A. Hassner, N. Heise, W. Hirt, B.M. Trager, ’Method and Means
for Invertibly Mapping Binary Sequences into Rate 2/3, (1, k) Run-
Length-Limited Coded Sequences with Maximum Transition Density
Constraints’, US Patent 6,195,025, Feb. 2001.

[124] A. Hayami, ’Eight-to-fifteen Modulation using no Merging bit and
Optical Recording or Reading Systems Based Thereon’, US Patent
6,297,753, Oct. 2001.

[125] M.K. Haynes, ’Magnetic Recording Techniques for Buried Servos’,
IEEE Trans. Magn., vol. MAG-17, no. 6, pp. 2730-2734, Nov. 1981.

[126] J.F. Heanue, M.C. Bashaw, and L. Hesselink, ’Volume Holographic
Storage and Retrieval of Digital Data’, Science, pp. 749-752, 1994.

[127] ——-, ’Channel Codes for Digital Holographic Data Storage’, J. Opt.
Soc. Am., vol. 12, 1995.

[128] M. Hecht and A. Guida, ’Delay Modulation’, Proceedings IEEE, vol.
57, pp. 1314-1316, July 1969.

[129] C.D. Heegard, B.H. Marcus, and P.H. Siegel, ’Variable-length State
Splitting with Applications to Average Runlength-constrained (ARC)
Codes’, IEEE Trans. Inform. Theory, vol. IT-37, no. 3, pp. 759-777,
May 1991.

[130] J.P.J. Heemskerk and K.A.S. Immink, ’Compact Disc: System As-
pects and Modulation’, Philips Techn. Review, vol. 40, no. 6, pp.
157-164, 1982.

[131] P.S. Henry, ’Zero Disparity Coding System’, US Patent 4,309,694,
Jan. 1982.

[132] W. Hirt, M. Hassner, and N. Heise, ’IrDA-VFlr (16 Mb/s): Modula-
tion Code and System Design’, IEEE Personal Communication, pp.
58-71, Feb. 2001.

www.manaraa.com

BIBLIOGRAPHY 323

[133] T. Himeno, M. Tanaka, T. Katoku, K. Matsumoto, M. Tamura, and
H. Min-Jae, ’High-density Magnetic Tape Recording by a Nontracking
Method’, Electronics and Communications in Japan, Part 2, Vol. 76.
no. 5, pp. 83-93, 1993

[134] J. Hogan, R.M. Roth, and G. Ruckenstein, ’Nested Input-Constrained
Codes’, IEEE Trans. Inform. Theory, vol. IT-46, pp. 1302-1316, July
2000.

[135] K. Hole and Ø. Ytrehus, ’Improved Coding Techniques for Partial-
Response Channels’, IEEE Trans. Inform. Theory, vol. IT-40, no. 2,
pp.482-493, March 1994.

[136] H.D.L. Hollmann, ’A Block-Decodable (d, k) = (1,8) Runlength-
Limited rate 8/12 code, IEEE Trans. Inform. Theory, vol. IT-40, no.
4, pp. 1292-1295, July 1994.

[137] ——-, ’On the Construction of Bounded-delay Encodable Codes for
Constrained Systems’, IEEE Trans. Inform. Theory, vol. IT-41, no.
5, pp. 1354-1378, Sept. 1995.

[138] ——-, ’Bounded-delay-encodable block-decodable codes for con-
strained systems’, IEEE Trans. Inform. Theory, vol. IT-42, no. 6,
pp. 1957-1970, Nov. 1996.

[139] ——-, Modulation Codes, Thesis Eindhoven University of Technology,
Dec. 1996.

[140] ——-, ’On an Approximate Eigenvector Associated with a Modulation
Code’, IEEE Trans. Inform. Theory, vol. IT-43, pp. 1672-1678, Sept.
1997.

[141] H.D.L. Hollmann and K.A.S. Immink, ’Performance of Efficient Bal-
anced Codes’, IEEE Trans. Inform. Theory, vol. IT-37, no. 3, pp.
913-918, May 1991.

[142] A. Hoogendoorn, ’Digital Compact Cassette’, Proceedings IEEE, vol.
82, no. 10, pp. 1479-1489, Oct. 1994.

[143] T. Horiguchi and K. Morita, ’An Optimization of Modulation Codes
in Digital Recording’, IEEE Trans. Magn., vol. MAG-12, no. 6, pp.
740-742, Nov. 1976.

[144] D.G. Howe and H.M. Hilden, ’Shift Error Propagation in (2,7) Mod-
ulation Code’, IEEE Journal on Selected Areas in Communications,
vol. 10, no. 1, pp. 223-232, Jan. 1992.

www.manaraa.com

324 BIBLIOGRAPHY

[145] T.D. Howell, ’Analysis of Correctable Errors in the IBM 3380 Disk
File’, IBM J. Res. Develop., vol. 28, no. 2, pp. 206-211, March 1984.

[146] ——-, ’Statistical Properties of Selected Recording Codes’, IBM J.
Res. Develop., vol. 33, no. 1, pp. 60-73, Jan. 1989.

[147] K.A.S. Immink, ’Construction of Binary DC-constrained Codes’,
Philips J. Res., vol. 40, pp. 22-39, 1985.

[148] ——-, ’Spectral Null Codes’, IEEE Trans. Magn., vol. MAG-26, no.
2, pp. 1130-1135, March 1990.

[149] ——-, ’Block-decodable Runlength-limited Codes Via Look-ahead
Technique’, Philips J. Res., vol. 46, no. 6, pp. 293-310, 1991.

[150] ——-, Coding Techniques for Digital Recorders, Prentice-Hall Inter-
national (UK) Ltd., Englewood Cliffs, New Jersey, 1991.

[151] ——-, ’The Digital Versatile Disc (DVD): System Requirements and
Channel Coding’, SMPTE Journal , vol. 105, pp. 483-489, no. 8, Aug.
1996.

[152] ——-, ’A rate 4/6, (d = 1, k = 11) Block-decodable Runlength-limited
Code’, IEEE Trans. Inform. Theory, vol. IT-42, no. 5, pp. 1551-1553,
Sept. 1996.

[153] ——-, ’Methods and Devices for Converting a Sequence of m-bit In-
formation Words to a Modulated Signal and Including that Signal on
a Record Carrier, Devices for Decoding that Signal and Reading it
from a Record Carrier, and that Signal’, US Patent 5,642,113, June
1997.

[154] ——-, ’A Practical Method for Approaching the Channel Capacity of
Constrained Channels’, IEEE Trans. Inform. Theory, vol. IT-43, no.
5, pp. 1389-1399, Sept. 1997.

[155] ——-, ’Weakly Constrained Codes’, Electronics Letters, vol. 33, no.
23, pp. 1943-1944, Nov. 1997.

[156] ——-, ’Method of Converting a Series of m-bit Information Words to
a Modulated Signal, Method of Producing a Record Carrier, Coding
Device, Device, Decoding Device, Recording Device, Reading Device,
Signal as well as Record Carrier’, US Patent 5,696,505, Dec. 1997.

[157] ——-, ’Method of Converting a Series of m-bit Information Words to
a Modulated Signal, Method of Producing a Record Carrier, Coding
Device, Device, Recording Device, Signal, as well as a Record Carrier’,
US Patent 5,790,056, Aug. 1998.

www.manaraa.com

BIBLIOGRAPHY 325

[158] ——-, ’A Survey of Codes for Optical Disk Recording’, IEEE J. Select.
Areas Commun., vol.19, no.4, pp.756–764, April 2001.

[159] ——-, ’Method of Converting a Series of m-bit Information Words
into a Modulated Signal, US Patent 6,768,432, July 2004.

[160] K.A.S. Immink and G.F.M. Beenker, ’Binary Transmission Codes
with Higher Order Spectral Zeros at Zero Frequency’, IEEE Trans.
Inform. Theory, vol. IT-33, no. 3, pp. 452-454, May 1987.

[161] K.A.S. Immink and U. Gross, ’Optimization of Low-frequency Prop-
erties of Eight-to-Fourteen Modulation’, The Radio and Electronic
Engineer, vol. 53, no. 2, pp. 63-66, Feb. 1983.

[162] K.A.S. Immink and H.D.L. Hollmann, ’Prefix-synchronized Run-
length-limited Sequences’, IEEE Journal on Selected Areas in Com-
munications., vol. 10, no. 1, pp. 214-222, Jan. 1992.

[163] K.A.S. Immink and A.J.E.M. Janssen, ’Error Propagation Assessment
of Enumerative Coding Schemes’, IEEE Trans. Inform. Theory, vol.
IT-45, no. 7, Nov. 1999.

[164] K.A.S. Immink, J.Y. Kim, S.W. Suh, and S.K. Ahn, ’Extremely Ef-
ficient Dc-free RLL codes for Optical Recording’, IEEE Trans. Com-
mun., vol COM-51, no. 3, pp. 326-331, March 2003.

[165] K.A.S. Immink and H. Ogawa, ’Method for Encoding Binary Data’,
US Patent 4,501,000, Feb. 1985.

[166] K.A.S. Immink and L. Patrovics, ’Performance Assessment of DC-
Free Multimode Codes’, IEEE Trans. Commun., vol. 45, no. 3, March
1997.

[167] K.A.S. Immink, P.H. Siegel, and J.K. Wolf, ’Codes for Digital
Recorders’, IEEE Trans. Inform. Theory, vol. IT-44, pp. 2260-2299,
Oct. 1998.

[168] K.A.S. Immink and A.J. van Wijngaarden, ’Simple High-rate Con-
strained Codes’, Electronics Letters, vol. 32, no. 20, pp. 1877, Sept
1996

[169] H. Ino, T. Sato, and T. Nakagawa, ’Modulating Method, Modulating
Device and Demodulating Device’, US Patent 5,506,581, April 1996.

[170] J. Isailovic, Videodisc and Optical Memory Systems, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1985.

www.manaraa.com

326 BIBLIOGRAPHY

[171] M. Isozaki, ’Digital Recording System with (8,16,2,5) Run Length
Limited (RLL) Code’, US Patent 5,198,813, Mar. 1993.

[172] G.V. Jacoby, ’A New Look-Ahead Code for Increasing Data Density’,
IEEE Trans. Magn., vol. MAG-13, no. 5, pp. 1202-1204, Sept. 1977.

[173] ——-, ’Method and Apparatus for Encoding and Recovering Binary
Digital Data’, US Patent 4,323,931, Apr. 1982.

[174] G.V. Jacoby and R. Kost, ’Binary Two-thirds Rate Code with Full
Word Look-Ahead’, IEEE Trans. Magn., vol. MAG-20, no. 5, pp.
709-714, Sept. 1984.

[175] A.J.E.M. Janssen and K.A.S. Immink, An Entropy Theorem for Com-
puting the Capacity of Weakly (d, k)-constrained Sequences, IEEE
Trans. Inform. Theory, vol. IT-46, pp. 1034-1038, May 2000.

[176] F. Jorgensen, The Complete Handbook of Magnetic Recording, TAB
Books, Blue Ridge Summit, Pennsylvania, July 1980.

[177] J. Justesen, ’Information Rates and Power Spectra of Digital Codes’,
IEEE Trans. Inform. Theory, vol. IT-28, no. 3, pp. 457-472, May
1982.

[178] ——-, ’Calculation of Power Spectra for Block Coded Signals’, IEEE
Trans. Commun., vol. COM-49, no. 3, pp. 389 - 392, Mar. 2001.

[179] J. Justesen and T. Hoholdt, ’Maxentropic Markov Chains’, IEEE
Trans. Inform. Theory, vol. IT-30, no. 4, pp. 665-667, July 1984.

[180] J.A.H. Kahlman and K.A.S. Immink, ’Channel Code with Embedded
Pilot Tracking Tones for DVCR’, IEEE Trans. Consumer Electr., vol.
CE-41, no. 1, pp. 180-185, Feb. 1995.

[181] ——-, ’Device for Encoding/Decoding N -bit Source Words into
Corresponding M -bit Channel Words, and Vice Versa’, US Patent
5,477,222, Dec. 1995.

[182] J.A.H. Kahlman, K.A.S. Immink, G. van den Enden, T. Nakagawa,
Y. Shimpuku, T. Narahara, and K. Nakamura, ’Modulation Appa-
ratus/Method, Demodulation Apparatus/Method and Program Pre-
senting Medium’, US Patent 6,677,866, Jan. 2004.

[183] H. Kamabe, ’Minimum Scope for Sliding Block Decoder Mappings’,
IEEE Trans. Inform. Theory, vol. IT-35, no. 6, pp. 1135-1340, Nov.
1989.

www.manaraa.com

BIBLIOGRAPHY 327

[184] ——-, ’Spectral Lines of Codes as Functions of Finite Markov Chains’,
IEEE Trans. Inform. Theory, vol. IT-37, no. 3, pp. 927-941, May 1991.

[185] K. Kanota and M. Nagai, ’Signal Processing Apparatus Selecting a
Scrambled Signal having a Desired DC component from among a Plu-
rality of Scrambled Signal Obtained by Scrambling an Input-data Sig-
nal with Respective Pseudo-random Signals’, US Patent 5,122,912,
June 1992.

[186] R. Karabed and B.H. Marcus, ’Sliding-Block Coding for Input-
Restricted Channels’, IEEE Trans. Inform. Theory, vol. IT-34, no.
1, pp. 2-26, Jan. 1988.

[187] R. Karabed and P.H. Siegel, ’Matched Spectral-Null Codes for Partial-
Response Channels’, IEEE Trans. Inform. Theory, vol. IT-37, no. 3,
pp. 818-855, May 1991.

[188] ——-, ’A 100% Efficient Sliding-block Code for the Charge-
constrained Runlength Limited Channel with Parameters (d, k, c) =
(1,3,3)’, IEEE International Symposium Inform. Theory, Budapest,
June 1992.

[189] ——-, ’Even-mark-modulation for Optical Recording’, US
Patent 4,870,414, Sept. 1989.

[190] ——-, ’Even Mark Modulation for Optical Recording’, Proceedings
1989 IEEE Int. Conf. on Communications, vol. 3, Session 53.5.1, pp.
1628-1632, June 1989.

[191] R. Karabed, P.H. Siegel, and E. Soljanin, ’Constrained Coding for
Binary Channels with high Intersymbol Interference’, IEEE Trans.
Inform. Theory, vol. IT-45, no. 6, pp. 1777-1797, Sept. 1999.

[192] N. Kashyap and P.H. Siegel, ’Sliding-Block Decodable Encoders Be-
tween (d, k) Runlength-Limited Constraints of Equal Capacity’, IEEE
Trans. Inform. Theory, vol. IT-50, no. 6, pp. 1327-1331, June 2004.

[193] Y. Katayama, T. Nishiya, H. Yamakawa, T. Katou, and S. Taira,
’Asymmetrical DC control Code for Dual-layered Optical Disks’, Jour-
nal of the Magnetics Society of Japan, vol. 25, no. 3, pt. 2, pp. 457-458,
2001.

[194] Y. Katayama, T. Katou, Nishiya, H. Yamakawa, and S. Taira, ’Rate
8/14 Asymmetrical DC Control Code for Optical Disks’, Fourth IEEE
Pacific Rim Conference on Lasers and Electro-Optics, CLEO/Pacific
Rim 2001, pages II-8 - II-9 vol.2, July 2001.

www.manaraa.com

328 BIBLIOGRAPHY

[195] A. Kato and K. Zeger, ’On the Capacity of Two-Dimensional Run-
Length Constrained Channels’, IEEE Trans. Inform. Theory, vol. IT-
45, no. 5, pp. 1527-1540, July 1999.

[196] W.H. Kautz, ’Fibonacci Codes for Synchronization Control’, IEEE
Trans. Inform. Theory, vol. IT-11, pp. 284-292, 1965.

[197] K. Kayanuma, C. Noda, and T. Iwanaga, ’Eight to Twelve Modulation
Code for High Density Optical Disk’, Proc. ISOM03 Conference, We-
F-45, Nov. 2003.

[198] L. Ke and M.W. Marcellin, ’A New Construction for n-Track (d, k)
Codes with Redundancy’, IEEE Trans. Inform. Theory, vol. IT-41,
no. 4, pp. 1107-1115, July 1995.

[199] J.G. Kemeny and J.L. Snell, Finite Markov Chains, Van Nostrand,
London, 1960.

[200] K.J. Kerpez, ’The Power Spectral Density of Maximum Entropy
Charge Constrained Sequences’, IEEE Trans. Inform. Theory, vol.
IT-35, no. 3, pp. 692-695, May 1989.

[201] ——-, ’Runlength Codes from Source Codes’, IEEE Trans. Inform.
Theory, vol. IT-37, no. 3, pp. 682-687, May 1991.

[202] K.J. Kerpez, A. Gallopoulos, and C. Heegard, ’Maximum Entropy
Charge-Constrained Run-Length Codes’, IEEE Journal on Selected
Areas in Communications, vol. 10, no. 1, pp. 242-253, Jan. 1992.

[203] G. Khachatrian and K.A.S. Immink, ’Construction of Simple
Runlength-Limited Codes’, Electronics Letters, vol. 35, no 2, pp. 140,
1999.

[204] M.J. Kim, ’7/13 Channel Coding and Decoding Method Using
RLL(2,25) Code’, US Patent 6,188,336, Feb. 2001.

[205] Y.J. Kim, B.M. Jin, and K.R. Cho, ’Coding/decoding System of Bit
Insertion/Manipulation Line Code for High-Speed Optical Transmis-
sion System’, US Patent 6,333,704, Dec 2001.

[206] D.E. Knuth, ’Efficient Balanced Codes’, IEEE Trans. Inform. Theory,
vol. IT-32, no. 1, pp. 51-53, Jan. 1986.

[207] H. Kobayashi and D.T. Tang, ’Application of Partial Response Chan-
nel Coding to Magnetic Recording Systems’, IBM J. Res. Develop.,
vol. 14, pp. 368-375, July 1970.

www.manaraa.com

BIBLIOGRAPHY 329

[208] H. Kobayashi, ’A Survey of Coding Schemes for Transmission or
Recording of Digital Data’, IEEE Trans. Commun., vol. COM-19,
pp. 1087-1099, Dec. 1971.

[209] R. Kuki and K. Saeki, ’Encoder/decoder System with Suppressed Er-
ror Propagation’, US Patent 6,097,320, Aug. 2000.

[210] A. Kunisa, ’Control of Parameters of Channel Constraints Using
Guided Scrambling for Digital Recording’, PhD Thesis, Ehime Uni-
versity, Aug. 1999.

[211] ——-, ’Runlength Control Based on Guided Scrambling for Digital
Magnetic Recording’, IEICE Trans. on Electronics, vol. E82-C, pp.
2209-2217, No. 12, Dec. 1999.

[212] ——-, ’Runlength Violation of Weakly Constrained Code’, IEEE
Trans. Commun., vol. COM-50, pp. 1-6, Jan. 2002.

[213] ——-, ’Symbol Error Probability for Guided Scrambling Over a
Recording Channel’, IEEE Trans. Inform. Theory, vol. IT-50, no.
2, pp. 344-349, Feb. 2004.

[214] A. Kunisa, S. Takahashi, and N. Itoh, ’Digital Modulation Method for
Recordable Digital Video Disc’, IEEE Trans. Consumer Electronics.,
vol. 42, pp. 820-825, Aug. 1996.

[215] A. Kunisa and N. Itoh, ’Digital Modulation and Demodulation’,
US Patent 6,141,787, Oct. 2000.

[216] E. Labin and P.R. Asgrain, ’Electric Pulse Communication System’,
UK Patent 713,614, 1951.

[217] E.A. Lee and D.G. Messerschmidtt, Digital Communications , Second
Edition, Kluwer Academic Publishers, 1994.

[218] B.G. Lee and S.C. Kim, Scrambling Techniques for Digital Transmis-
sion, London UK Springer-Verlag 1994.

[219] J. Lee, ’Run-length Limited (3,11) Code for High Density Optical
Storage Systems’, Electronics Letters,, vol. 36, No. 9, pp. 810-811,
April 2000.

[220] A. Lempel and M. Cohn, ’Look-Ahead Coding for Input-Restricted
Channels’, IEEE Trans. Inform. Theory, vol. IT-28, no. 6, pp. 933-
937, Nov. 1982.

[221] J. Li and J. Moon, ’DC-Free Run-Length-Limited Codes for Magnetic
Recording’, IEEE Trans. Magn., vol. 33, no. 1, pp. 868-874, Jan. 1997.

www.manaraa.com

330 BIBLIOGRAPHY

[222] Y. Lin and P.-H. Liu, ’A Construction Technique for Charge Con-
strained (1,k ≥ 4) Codes’, IEEE Trans. Magn., vol. MAG-31, no. 6,
pp. 3081-3083, Nov. 1995.

[223] ——-, ’Charge-Constrained (0,G/I;C) Sequences’, IEEE Trans. Com-
mun., vol. 45, no. 10, pp. 1183-1191, Oct. 1997.

[224] D. Lind and B. Marcus, Symbolic Dynamics and Coding, Cambridge
University Press, 1995.

[225] Y.X. Li, S.Y. Hsu, and T. Tsao, ’A New Design of EFM Constrained
Codes’, IEEE Trans. on Magn., vol. MAG-31, no. 6, Nov. 1995

[226] D.A. Lindholm, ’Power Spectra of Channel Codes for Digital Magnetic
Recording’, IEEE Trans. Magn., vol. MAG-14, no. 5, pp. 321-323,
Sept. 1978.

[227] N.D. Mackintosh, ’The Choice of a Recording Code’, Proceedings Int.
Conf. on Video and Data Recording, IERE Conf. Proc. 43, Southamp-
ton, pp. 77-120, July 1979.

[228] J.C. Mallinson and J.W. Miller, ’Optimal Codes for Digital Magnetic
Recording’, Radio and Elec. Eng., vol. 47, pp. 172-176, 1977.

[229] M. Mansuripur, ’Enumerative Modulation Coding with Arbitrary
Constraints and Post-Modulation Error Correction Coding for Data
Storage Systems’, Optical Data Storage, SPIE, pp. 76-86, vol. 1499,
1991.

[230] M.W. Marcellin and H.J. Weber, ’Two-Dimensional Modulation
Codes’, IEEE Journal on Selected Areas in Communications, vol. 10,
no. 1, pp. 254-266, Jan. 1992.

[231] B.H. Marcus, ’Sofic Systems and Encoding Data’, IEEE Trans. In-
form. Theory, vol. IT-31, no. 3, pp. 366-377, May 1985.

[232] B.H. Marcus, A.M. Patel, and P.H. Siegel, ’Method and Apparatus
for Implementing a PRML Code’, US Patent 4,786,890, Nov. 1988.

[233] B.H. Marcus and P.H. Siegel, ’On Codes with Spectral Nulls at Ra-
tional Sub-multiples of the Symbol Frequency’, IEEE Trans. Inform.
Theory, vol. IT-33, no. 4, pp. 557-568, July 1987.

[234] B.H. Marcus and R.M. Roth, ’Bounds on the Number of States in En-
coder Graphs for Input-constrained Channels’, IEEE Trans. Inform.
Theory, vol. IT-37, no. 3, part 2, pp. 742-758, May 1991.

www.manaraa.com

BIBLIOGRAPHY 331

[235] B.H. Marcus, P.H. Siegel, and J.K. Wolf, ’Finite-state Modulation
Codes for Data Storage’, IEEE Journal on Selected Areas in Commu-
nications, vol. 10, no. 1, pp. 5-37, Jan. 1992.

[236] B.H. Marcus, R.M. Roth, and P.H. Siegel, ’Constrained Systems and
Coding for Recording Channels’, in Handbook of Coding Theory, R.
Brualdi, C. Huffman, and V. Pless, Editors, Amsterdam, The Nether-
lands, Elsevier Press, 1996.

[237] M.A. McClellan, ’Runlength-limited Code and Method’, US Patent
6,285,302, Sept. 2001.

[238] S.B. McClelland, ’Compatible Digital Magnetic Recording System’,
US Patent 4,261,019, April 1981.

[239] P. McEwen, B. Zafar, and K. Fitzpatrick, ’High Rate Runlength Lim-
ited Codes for 8-bit ECC Symbols’, US Patent 6,201,485, March 2001.

[240] S.W. McLaughlin, ’Five Runlength-limited Codes for M -ary Record-
ing Channels’, IEEE Trans. on Mag., vol. MAG-33, no. 3, pp. 2442-
2450, May 1997

[241] ——-, ’The Construction ofM -ary (d, 8) Codes that Achieve Capacity
and Have the Fewest Number of Encoder States’, IEEE Trans. on
Inform. Theory, vol. IT-43, no. 2, pp. 699-703, March 1997

[242] S.W. McLaughlin, J. Luo, and Q. Xie, ’On the Capacity of M -ary
Runlength-Limited Codes’, IEEE Trans. Inform. Theory, vol. IT-41,
no. 5, pp. 1508-1511, Sept. 1995.

[243] D.H. McMahon, A.A. Kirby, B.A. Schofield, and K. Springer, ’Data
and Forward Error Control Coding Techniques for Digital Signals’,
US Patent 5,396,239, March 1995.

[244] C.D. Mee and E.D. Daniel, Magnetic Recording, McGraw-Hill Book
Company, New York, 1987.

[245] C. Menyennett and H.C. Ferreira, ’Sequences and Codes with Asym-
metrical Runlength Constraints’, IEEE Trans. Commun., vol. COM-
43, pp. 1862-1865, May 1995.

[246] O. Milenkovic and B. Vasic, ’Permutation (d, k) codes: Efficient Enu-
merative Coding and Phrase Length Distribution Shaping’, IEEE
Trans. Inform. Theory, vol. IT-46, no. 7, pp. 2671-2675, Nov. 2000.

[247] A. Miller, ’Transmission System’, US Patent 3,108,261, Oct. 1963.

www.manaraa.com

332 BIBLIOGRAPHY

[248] J.W. Miller, ’DC-Free Encoding for Data Transmission System’,
US Patent 4,027,335, May 1977.

[249] J.W. Miller and P.J. Rudnick, ’Limited Look-Ahead Means’,
US Patent 4,437,086, March 1984.

[250] J. Ming, K.A.S. Immink, and B. Farhang-Boroujeny, ’Design Tech-
niques for Weakly Constrained Codes’, Trans. on Commun., vol. 51,
no. 5, pp. 709-714, May 2003.

[251] D.S. Modha and B.H. Marcus, ’Art of Constructing Low-complexity
Encoders/decoders for Constrained Block Codes’, IEEE Journal on
Selected Areas in Communications, vol. 19, no. 4, pp. 589-601, April
2001.

[252] C.M. Monti and G.L. Pierobon, ’Codes with a Multiple Spectral Null
at Zero Frequency’, IEEE Trans. Inform. Theory, vol. IT-35, pp. 463-
472, no. 2, March 1989.

[253] J. Moon and B.J. Brickner, ’Maximum Transition Run Codes for Data
Storage Systems’, IEEE Trans. Magn., vol. 32, no. 5, pt. 1, pp. 3992-
3994, Sept. 1996.

[254] ——-, ’Design of a Rate 6/7 Maximum Transition Run Code’, IEEE
Trans. Magn., vol. 33, pp. 2749-2751, Sept. 1997.

[255] ——-, ’Method and Apparatus for Implementing Maximum Transi-
tion Run Codes’, US Patent 5,859,601, Jan. 1999

[256] Y. Moriyama, ’Data Converting Apparatus’, US Patent 5,151,699,
Sept. 1992.

[257] ——-, ’Method and Apparatus for Reducing DC Component of RLL
Codes’, US Patent 5,742,243, April 1998.

[258] Z. Nagy and K. Zeger, ’Capacity Bounds for the Three-Dimensional
(0,1) Runlength Limited Channel’, IEEE Trans. Inform. Theory , vol.
IT-46, pp. 1030-1033, May 2000.

[259] H. Nakajima and K. Odaka, ’A Rotary-head High-density Digital Au-
dio Tape Recorder’, IEEE Trans. Consumer Electr., vol. CE-29, pp.
430-437, Aug. 1983.

[260] T. Narahara, S. Kobayashi, M. Hattori, Y. Shimpuku, G. van den En-
den, J.A. Kahlman, M. van Dijk, and R. Woudenberg, ’Optical Disc
System for Digital Video Recording’, Proceedings Joint Int. Sympo-
sium on Optical Memory and Optical Data Storage, Hawaii, pp. 50-52,
July 11-15, 1999.

www.manaraa.com

BIBLIOGRAPHY 333

[261] G.S. Murdock, ’Apparatus and Method for Providing Direct Current
Balanced Code’, US Patent 6,351,501, Feb. 2002.

[262] T. Nishiya, K. Tsukano, T. Hirai, S. Mita, and T. Nara, ’Rate 16/17
Maximum Transition Run (3,11) Code on an EEPRML Channel with
an Error-Correcting Post-processor’, IEEE Trans. Magn., vol. MAG-
35, no. 5, pp. 4378-4386, Sept. 1999.

[263] C. Noda and Y. Ishizawa, ’Data Encoding Method, Apparatus, and
Storage Medium’, US Patent 6,559,779, May 2003.

[264] K. Norris and D.S. Bloomberg, ’Channel Capacity of Charge-Con-
strained Run-Length Limited Codes’, IEEE Trans. Magn., vol. MAG-
17, no. 6, pp. 3452-3455, Nov. 1981.

[265] H. Nyquist, ’Certain Topics in Telegraph Transmission Theory’,
Trans. AIEE, vol. 47, pp. 617-644, Feb. 1928.

[266] K. Odaka, ’Method and Apparatus for Encoding Binary Data’,
US Patent 4,456,905, June 1984.

[267] E.K. Orcutt and M.W. Marcellin, ’Enumerable Multi-Track (d, k)
Block Codes’, IEEE Trans. Inform. Theory, vol. IT-39, pp. 1738-1743,
Sept. 1993.

[268] ——-, ’Redundant Multi-Track (d, k) Codes’, IEEE Trans. Inform.
Theory, vol. IT-39, pp. 1744-1750, Sept. 1993.

[269] E. Ordentlich and R.M. Roth, ’Two-Dimensional Weight-Constrained
Codes Through Enumeration Bounds’, IEEE Trans. Inform. Theory,
vol. IT-46, pp. 1292-1301, July 2000

[270] A. Papoulis, The Fourier Integral and its Applications, McGraw-Hill
Book Company, Inc., New York, 1962.

[271] ——-, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill Book Company, Inc., New York, 1965.

[272] A. Patapoutian, J. Stander; P. McEwen, B. Zafer, and J. Fitzpatrick,
’Rate 32/33, (d = 0, k = 6) Runlength Limited Modulation Code Hav-
ing Optimized Error propagation’, US Patent 6,184,806, Feb. 2001.

[273] A.M. Patel, ’Data Coding with Stable Base Line for Recording and
Transmitting Binary Data’, US Patent 3,810,111, May 1974.

[274] ——-, ’Zero-modulation Encoding in Magnetic Recording’, IBM J.
Res. Develop., vol. 19, pp. 366-378, July 1975.

www.manaraa.com

334 BIBLIOGRAPHY

[275] ——-, ’Improved Encoder and Decoder for a Byte-Oriented Rate 8/9,
(0,3) Code’, IBM Techn. Discl. Bul., vol. 28, pp. 1938, 1975.

[276] ——-, ’Charge-Constrained Byte-Oriented (0,3) code’, IBM Techn.
Discl. Bull., vol. 19, no. 7, pp. 2715-2717, Dec. 1976.

[277] L. Patrovics and K.A.S. Immink, ’Encoding of dklr-sequences Using
One Weight Set’, IEEE Trans. Inform. Theory, vol. IT-42, no. 5, pp.
1553-1554, Sept. 1996.

[278] J.B.H. Peek, ’Communications Aspects of the Compact Disc Digital
Audio System’, IEEE Commun. Magazine, vol. 23, pp. 7-15, Feb.
1985.

[279] M.G. Pelchat and J.M. Geist, ’Surprising Properties of Two-level
”Bandwidth Compaction” Codes’, IEEE Trans. Commun., vol. COM-
23, pp. 878-883, Sept. 1975.

[280] ——-, Correction to ’Surprising Properties of Two-level ”Bandwidth
Compaction” Codes’, IEEE Trans. Commun., vol. COM-24,pp. 479,
April 1976.

[281] K. Petersen, ’Chains, Entropy, Coding’, Ergod. Theory and Dynam.
Syst., vol. 6, pp. 415-448, 1987.

[282] W.W. Peterson and E.J. Weldon, Error-Correcting Codes, MIT Press,
Cambridge, Massachusetts, 1972.

[283] B.E. Phelps, ’Magnetic Recording Method’, US Patent no. 2,774,646,
Dec. 1960.

[284] G.L. Pierobon, ’Codes for Zero Spectral Density at Zero Frequency’,
IEEE Trans. Inform. Theory, vol. IT-30, no. 2, pp. 435-439, March
1984.

[285] K.C. Pohlman, The Compact Disc Handbook, A-R Editions, Madison,
1992.

[286] G. Polya, ’Picture Writing’, American Mathematical Monthly, pp. 689,
Dec. 1956,

[287] A.H. Reeves, ’Electric Signaling System’, US Patent 2,272,070, Nov.
1939.

[288] L. Reggiani and G. Tartara, ’On Reverse Concatenation and Soft
Decoding Algorithms for PRMLMagnetic Recording Channels’, IEEE
Journal on Selected Areas in Communications, vol. 19, no. 4, pp. 612-
618, April 2001.

www.manaraa.com

BIBLIOGRAPHY 335

[289] G. van Rensburg and H.C. Ferreira, ’Four New Runlength Constrained
Recording Codes’, Electronics Letters, vol. 24, pp. 1110-1111, Aug.
1988.

[290] J. Riordan, An Introduction to Combinatorial Analysis, Princeton
University Press, 1980.

[291] R.M. Roth, ’On Runlength-limited Coding with Dc-control’, IEEE
Trans. Commun., vol. COM-48, pp. 351-358, March 2000.

[292] R.M. Roth, P.H. Siegel, and A. Vardy, ’Higher-Order Spectral-Null
Codes: Constructions and Bounds’, IEEE Trans. Inform. Theory,
vol. IT-40, pp. 1826-1840, Nov. 1994.

[293] G. Ruckenstein and R.M. Roth, ’Lower Bounds on the Anticipation of
Encoders for Input-constrained Channels’, IEEE Trans. Info. Theory,
vol. IT-47, pp. 1796-1812, July 2001.

[294] N.R. Saxena and J.P. Robinson, ’Accumulator Compression Testing’,
IEEE Trans. Computers, C-35, pp. 317-321, April 1986

[295] M.P. Schuetzenberger, ’On the Synchronizing Properties of Certain
Prefix Codes’, Information and Control, vol. 7, pp. 23-36, 1964.

[296] C.E. Shannon, ’A Mathematical Theory of Communication’, Bell
Syst. Tech. J., vol. 27, pp. 379-423, July 1948.

[297] P.D. Shaft, ’Bandwidth Compaction Codes for Communications’,
IEEE Trans. Commun., vol. COM-21, pp. 687-695, June 1973.

[298] J. Shim and Y. Won, ’Method of Generating Runlength Limited
(RLL) Code Having Improved DC-Suppression Capability and Modu-
lation/Demodulation Method of the Generated RLL Code’, US Patent
6,268,810, July 2001.

[299] N. Shirota, ’Method and Apparatus for Reducing DC Components in
a Digital Information Signal’, US Patent 4,387,364, June 1983.

[300] P.H. Siegel, ’Recording Codes for Digital Magnetic Storage’, IEEE
Trans. Magn., vol. MAG-21, no. 5, pp. 1344-1349, Sept. 1985.

[301] P.H. Siegel and A. Vardy, ’Method and Apparatus for Construct-
ing Asymptotically Optimal Second Order Dc-free Channel Codes’,
US Patent 5,450,443, Sept. 1995.

[302] P.H. Siegel and J.K. Wolf, ’Modulation and Coding for Information
Storage’, IEEE Commun. Magazine, vol. 29, no. 12, pp. 68-86, Dec.
1991.

www.manaraa.com

336 BIBLIOGRAPHY

[303] ——-, ’Bit-stuffing Bounds on the Capacity of Two-Dimensional Con-
strained Arrays’, Proc. 1998 IEEE Int. Symposium Inform. Theory,,
pp. 323, 1998.

[304] V. Skachek, T. Etzion, and R.M. Roth, ’Efficient Encoding Algorithm
for Third-order Spectral-Null Codes’, IEEE Trans. Inform. Theory,
vol. IT-44, pp. 846-851, March 1998.

[305] E. Soljanin, ’Low disparity Coding Method for Digital Data’,
US Patent 6,188,337, Feb. 2001.

[306] E. Soljanin and C.N. Georghiades, ’Coding for Two-Head Recording
Systems’, IEEE Trans. Inform. Theory, vol. IT-41, no. 3, pp. 794-755,
May 1995.

[307] J.L. Sonntag, ’Apparatus and Method for Increasing Density of
Runlength Limited Codes without Increasing Error Propagation’,
US Patent 5,604,497, Feb. 1997.

[308] S.G. Stan, The CD-ROM Drive. A Brief System Description, Kluwer
Academic Publishers, Boston/Dordercht/London, 1998.

[309] R.W. Stevens, ’Data Transmission Code’, US Patent 5,025,256, June
1991.

[310] J.J. Stiffler, Theory of Synchronous Communications, Prentice-Hall,
Inc., Engelwood Cliffs, 1971.

[311] R.D. Swanson and J.K. Wolf, ’A New Class of Two-Dimensional RLL
Recording Codes’, IEEE Trans. Magn., vol.28, pp. 3407-3416, Nov.
1992.

[312] N.L. Swenson and J.M. Cioffi, ’Sliding-Block Line Codes to Increase
Dispersion-Limited Distance of Optical Fiber Channels’, IEEE Jour-
nal on Selected Areas in Communications, vol. 13, no. 3, pp. 485-498,
April 1995.

[313] L.G. Tallini and B. Bose, ’On Efficient High-Order Spectral-Null
Codes’, IEEE Trans. Inform. Theory, vol. IT-45, no. 7, pp. 2594-2601,
Nov. 1999.

[314] L.G. Tallini, R.M. Capocelli, and B. Bose, ’Design of Some New Bal-
anced Null Codes’, IEEE Trans. Inform. Theory, vol. IT-42, no. 3,
pp. 790-802, May 1996.

[315] R. Talyansky, T. Etzion, and R.M. Roth, ’Efficient Code Construc-
tion for Certain Two-Dimensional Constraints’, IEEE Trans. Inform.
Theory, vol. IT-45, no. 2, pp. 794-799, March 1999.

www.manaraa.com

BIBLIOGRAPHY 337

[316] S. Tanaka, ’Method and Apparatus for Encoding Binary Data’,
US Patent 4,728,929, March 1988.

[317] S. Tanaka, T. Shimada, K. Hirayama, and H. Yamada, ’Single Merg-
ing Bit Dc-suppressed Run Length Limited Coding’, US Patent
5,774,078, June 1998.

[318] S. Tanaka, T. Shimada, T. Kojima, K. Moriyama, F. Yokogawa, T.
Arai, T. Takeuchi, and T. Takeuchi, ’Digital Modulation Apparatus,
a Digital Modulation Method, and a Recording Medium Therefore’,
US Patent 5,917,857, June 1999.

[319] D.T. Tang and L.R. Bahl, ’Block Codes for a Class of Constrained
Noiseless Channels’, Information and Control, vol. 17, pp. 436-461,
1970.

[320] D.T. Tang, ’Run-length-limited Coding for Modified Raised-cosine
Equalization Channel’, US Patent 3,647,964, March 1972.

[321] S. Tazaki, F. Takeda, H. Osawa, and Y. Yamada ’Performance Com-
parison of 8-10 Conversion Codes’, Proc. 5th Int. Conf. on Video and
Data Recording, Southampton, pp. 79-84, 1984.

[322] T.J. Tjalkens, ’Runlength limited sequences’, IEEE Trans. Inform.
Theory, vol. IT-40, no. 3, pp. 934-940, 1994.

[323] S.A. Turk and C.P Zook, ’Selectively Removing Sequences from an
Enumerative Modulation Code’, US Patent 6,271,776, Aug. 2001.

[324] T. Uehara, H. Minaguchi, and Y. Oba, ’Digital Modulation Method’,
US Patent 4,988,999, Jan. 1999.

[325] R.S Varga, Matrix Iterative Analysis, Prentice-Hall, Inc., Engelwood
Cliffs, 1962.

[326] A. Vardy, M. Blaum, P.H. Siegel, and G.T. Sincerbox, ’Conserva-
tive Arrays: Multi-Dimensional Modulation Codes for Holographic
Recording’, IEEE Trans. Inform. Theory, vol. IT-42, no. 1, pp. 227-
230, Jan. 1996.

[327] B.V. Vasic, ’Capacity of Channels with Redundant Multi-Track (d, k)
constraints: The k < d Case’, IEEE Trans. Inform. Theory, vol. IT-
42, no. 5, pp. 1546-1548, Sept. 1996.

[328] ——-, ’Spectral Analysis of Maximum Entropy Multi-Track Modu-
lation Codes’, IEEE Trans. Inform. Theory, vol. IT-44, no. 4, pp.
1574-1587, July 1998.

www.manaraa.com

338 BIBLIOGRAPHY

[329] B.V. Vasic, G. Djordjevic, and M. Tosic, ’Loose Composite Constraint
Codes and Their Application in DVD’, IEEE Journal on Selected Ar-
eas in Communications, vol. 19, pp. 665-773, April 2001.

[330] B.V. Vasic, S.W. McLaughlin, O. Milenkovic, ’Shannon Capacity
of M -ary Redundant Multi-Track Runlength Limited Codes’, IEEE
Trans. Inform. Theory, vol. IT-44, no. 2, pp. 766-774, March 1998.

[331] N.N. Vorob’ev, Fibonacci Numbers, Gainsville New Classics Library,
1983.

[332] Y.H.W. Wang, K.A.S. Immink, X.B. Xu, and C.T. Chong, ’Compari-
son of Two Coding Schemes for Generating DC-free RLL Sequences’,
Proceedings Joint Int. Symposium on Optical Memory and Optical
Data Storage, Hawaii, pp. 288-290, July 1999.

[333] J. Watkinson, The Art of Digital Audio, Focal Press, London, 1988.

[334] J. Watkinson, The D-2 Digital Video Recorder, Focal Press, London,
1990.

[335] J. Watkinson, The Art of Digital Video, Focal Press, London, 1990.

[336] A.D. Weathers and R.D. Swanson, ’Apparatus Utilizing a Four-state
Encoder for Encoding and Decoding a Sliding Block (1,7) Code’,
US Patent 5,047,767, Sept. 1991.

[337] A.D. Weathers and J.K. Wolf, ’A New Rate 2/3 Sliding Block Code
for the (1,7) Runlength Constraint with the Minimum Number of
Encoder States’, IEEE Trans. Inform. Theory, vol. IT-37, no. 3, pp.
908-913, May 1991.

[338] J.H. Weber and K.A.S. Abdel-Ghaffar, ’Cascading Runlength-Limited
Sequences’, IEEE Trans. Inform. Theory, vol. IT-39, no. 6, pp. 1976-
1984, Nov. 1993.

[339] J.L. Westby, ’16B/20B encoder’, US Patent 5,663,724, Sept. 1997.

[340] S.B. Wicker and V.K. Bhargava, Edrs, Reed-Solomon Codes and Their
Applications, IEEE Press, 1994.

[341] A.X. Widmer, ’Partitioned DC Balanced (0,6), 16B/18B Transmission
Code with Error Correction’, US Patent 6,198,413, March 2001.

[342] A.X. Widmer and P.A. Franaszek, ’A Dc-balanced, Partitioned-Block,
8b/10b Transmission Code’, IBM J. Res. Develop., vol. 27, no. 5, pp.
440-451, Sept. 1983.

www.manaraa.com

BIBLIOGRAPHY 339

[343] ——-, ’Transmission Code for High-Speed Fiber-Optic Data Net-
works’, Electronics Letters, vol. 19, pp. 202-203, 1983.

[344] ——-, ’Byte-oriented DC-balanced (0,4) code 8B/10B Partitioned
Block Transmission Code’, US Patent 4,486,739, Dec 1984.

[345] A.J. van Wijngaarden and K.A.S. Immink, ’Construction of Con-
strained Codes Using Sequence Replacement Techniques’, Submitted
IEEE Trans. Inform. Theory, 1997.

[346] ——-, ’On Guided Scrambling with Guaranteed Maximum Run-
length Constraints’, IEEE Int. Symposium on Information Theory
(ISIT), Chicago, June 2004.

[347] ——-, ’Maximum Runlength Limited Codes with Error Control Ca-
pabilities’, IEEE Journal on Selected Areas in Communications, vol.
19, pp. 602-611, April 2001.

[348] A.J. van Wijngaarden and E. Soljanin, ’A Combinatorial Technique
for Constructing High-rate MTR-RLL Codes’, IEEE Journal on Se-
lected Areas in Communications , vol. 19, no. 4, pp. 582-588, April
2001.

[349] ——-, ’Methods and Apparatus for Implementing Run-length Limited
and Maximum Transition Run Codes’, US Patent 6,241,778, June
2001.

[350] R.W. Wood, ’Magnetic Recording Systems’, Proceedings IEEE, vol.
74, pp. 1557-1569, Nov. 1986.

[351] R.W. Wood and D.A. Petersen, ’Viterbi Detection of Class IV Partial
Response on a Magnetic Recording Channel’, IEEE Trans. Commun.,
vol. COM-34, pp. 454-461, May 1986.

[352] Y. Xin and I.J. Fair, ’Algorithms to Enumerate Codewords for DC2-
constrained Channels’, IEEE Trans. Inform. Theory, vol. IT-47, no.
7, pp. 3020-3025, Nov. 2001.

[353] ——-, ’A Performance Metric for Codes with a High-order Spectral
at Zero Frequency’, IEEE Trans. Inform. Theory, vol. IT-50, no. 2,
pp. 385-394, Feb. 2004.

[354] T. Yoshida, ’The Rewritable MiniDisc System’, Proceedings IEEE,
vol. 82, no. 10, pp. 1492-1500, Oct. 1994.

[355] S. Yoshida and S. Yajima, ’On the Relation Between an Encoding
Automaton and the Power Spectrum of its Output Sequences’, Trans.
IECE Japan, vol. 59, pp. 1-7, 1976.

www.manaraa.com

340 BIBLIOGRAPHY

[356] E. Zehavi, ’Coding for Magnetic Recording’, Ph.D. Thesis, University
of California, San Diego, 1987.

[357] E. Zehavi and J.K. Wolf, ’On Runlength Codes’, IEEE Trans. Inform.
Theory, vol. IT-34, no. 1, pp. 45-54, Jan. 1988.

www.manaraa.com

Index

(O,G/I) sequence, 83
(dk) sequence, 52
(dklr) sequence, 106, 108
(z) sequence, 200
Kth order zero-disparity, 253
dk constraint, 52
m-sequence, 260
n-step transition matrix, 16
z-constrained sequence, 200
dc2-balanced, 244

a.c. coupling, 6
Abdel-Ghaffar, 313
Abdel-Khaffar, 109, 284
ACH algorithm, 160, 172, 284
adjacency matrix, 21, 60, 88, 120
Adler, 160, 170, 171, 191, 313
AES, 309
Aigrain, 138
Al-Bassam, 237
almost block-decodable code, 126
Alon, 237
alphabet of symbols, 9, 87
approximate eigenvector, 100, 170
Ashley, 62, 63, 172, 192, 228, 313
asymmetrical constraints, 79
asymptotic information rate, 56
audio sample, 114
auto-correlation function, 30, 75, 244,

249
auto-covariance function, 30
automatic gain control(AGC), 273
autonomous machine, 37, 146
Aziz, 117, 314

Bahl, 52, 107, 138

Baldwin, 181, 285, 314
bandwidth-limited system, 5, 51
baseline wander, 6
Beenker, 106, 315
Bennett, 32
Bergmann, 313
Berkoff, 52, 315
Bernoulli, 57
Berstel, 73
Bertram, 315
Bhargava, 319
Biglieri, 315
binary entropy function, 11
binary to decimal conversion, 137
bit stuffing, 163, 275
Blahut, 12, 315
Blake, 63, 109, 315
Blaum, 91, 315
Bliss, 154, 315
Bliss’ scheme, 155
block code, 39, 95, 137
Bloomberg, 278
BluRay Disc, v, 4, 52, 289, 309
Bose, 237, 248, 336
Bosik, 32, 316
bounded-delay encodable code, 170
Bowers, 196, 257
Braat, 316
Braun, 283, 303, 316
Brayton, 313
Brickner, 79, 81
burst error, 2, 156
burst error correction, 155

Calderbank, 154, 319
Calkin, 91

341

www.manaraa.com

342 INDEX

Campello, 120
capacity, 4, 10, 56, 201, 204
Capocelli, 237
Cariolaro, 29, 39, 40, 316
Carter, 196, 316
Cattermole, 32, 33, 36, 196, 252, 305,

317
CD-I, v
CD-ROM, v
CD-V, v
change-of-state encoder, 52, 122, 198
channel capacity, 2, 60, 100, 114, 160,

193, 229
channel code, v, 2
channel constraint, vi, 4
characteristic equation, 17, 56, 79,

204, 278, 279
characterizing function, 38, 181
Chien, 200, 229, 317
Cideciyan, 79, 244, 317
Cioffi, 336
Code

(O,G/I) code, 83
k-constraint, 115
(0, 1) Code, 172
(0, 2) Code, 109
(0, 3) Code, 114
(0, 6) Code, 116
(1, 7) Code, 126, 171
(1, 7) parity preserve, 4
(1, 8) Code, 167
(1, 8) block-decodable code, 126
(1, 8) parity preserve, 289
(2, 7) Code, 166
(2, 9) Code, 132
3PM, 53, 127, 191
8b10b, 231
Baldwin, 181, 187
Bi-phase, 53
bi-phase, 47, 49, 227, 279
Delay Modulation, 42
EFM, 52, 114, 293, 296
EFM15, 301

EFM16a, 300
EFM16b, 300
EFMPlus, 52, 80, 286, 296
GCR, 109
Immink, 183
Manchester, 47
MFM, 42, 53, 98, 291
Miller, 42, 292
Miller-Miller, 292
Miller-Squared, 292, 295
Reed-Solomon, 2, 154, 296
Zero-Modulation, 291

code, 2
code efficiency, 96
code rate, 3, 10
codebook, 97, 252
codeword assignment, 97, 115
Coene, 287, 317
Cohn, 100
Compact Disc, v, 52, 114, 293, 309
compatible EFM, 295
concatenated scheme, 3
connection matrix, 21, 60, 88, 200
constrained channel, 9
constrained code, 2
constrained system, 18
Consumer Electronics, 309
Copeland, 258, 269
Coppersmith, 160, 287, 313
coupling components, 6, 195
Cover, 138, 318
crosstalk, 6, 31, 90, 232
cut-off frequency, 207, 243, 282
cyclo-stationary, 32, 239

D1 format, 305
Daniel, 115
DAT recorder, 4, 6, 232, 309
data detection, 83
Data Storage Institute, 309
data storage system, 3
Datta, 90, 140, 318
dc-balanced, 48

www.manaraa.com

INDEX 343

dc-balanced code, 47, 195
dc-control, 285, 294, 298
dc-control bit, 285, 286
dc-free code, 4, 47, 48, 195
DCC, 4
DCRLL, 277
de-scrambler, 260
decimal representation, 96
decoder window, 292, 301
decomposition, 17
degenerate pattern, 163
Delay Modulation, 42
Deng, 259
Denissen, 259, 318
density ratio, 58
detection window, 58, 82, 129
deterministic constraint, 10
difference equation, 56, 202
digital audio recording, v
digital sum variation (DSV), 200, 281
digraph, 14
directed graph, 14
discrete components, 41
discrete noiseless channel, 20
disparity, 196
distribution vector, 16
Dolivo, 317
DSV (digital sum variation), 200, 281
DVC, 4, 309
DVD, v, 4, 284, 296, 309

ECC, 3, 154, 156
edge, 14
edge graph, 18, 174
EFM alternatives, 300
Eggenberger, 85, 167, 318
eigenvalue inequality, 100
eigenvector, 17
Eleftheriou, 244, 317
encoder efficiency, 230
ensemble average, 30
entropy, 9, 11, 19, 201
entropy of Markov sources, 18

entropy of memoryless source, 10
enumerative encoding, 126, 129, 137
equilibrium distribution vector, 16
ergodic chain, 15, 34
error burst length, 152
error propagation, 95, 104, 133, 138,

152, 154, 159, 161, 167, 171,
270

Etzion, 91, 318
European Patent Office (EPO), 306
expectation, 30

Fair, 196, 247, 257, 318
Fan, 154, 157, 319
feedback register, 146
Feller, 73
Ferreira, 81, 191, 331
Fibonacci numbers, 54, 124
fingerprints, 195, 212
finite-state machine, 36, 60, 61, 200
Fisher, 119
Fitinghof, 154, 319
Fitzpatrick, 85, 119
floating point arithmetic, 144
floppy disk, 4
focal plane, 6
focus servo, 6
Forsberg, 63, 148
Fourier transform, 31, 46, 254
frame, 71, 169
frame synchronization, 71, 169, 260
Franaszek, 99, 103, 159, 169, 231,

251, 319
Franks, 32
Fredrickson, 320
Freiman, 52, 256
French, 192, 320
FSSM, 36
Fuja, 111, 300, 321
Fukuda, 232
fundamental theorem, 2
Funk, 81
future-dependent coding, 170

www.manaraa.com

344 INDEX

Gabor, 52, 169
Gallager, 12
Gallopoulos, 66, 280, 321
Gantmacher, 321
Geist, 66
generalized Fibonacci numbers, 55
generating function, 66, 107, 134, 147,

254
Georghiades, 90, 336
Gibbs’ inequality, 12
Gilbert, 71
Gorog, 321
graph, 14
Greenstein, 219, 321
Gregory, 305
Griffiths, 196
Gu, 111, 300
Guibas, 73
Guida, 43
guided scrambling, 196, 257, 285

Hadamard matrix, 270
Hadamard Transform, 258, 259, 269
hard disk drive, 171
Hassner, 160, 171, 189, 313
Hayami, 301, 322
HDD, 115
Hecht, 43
Heegard, 66, 192, 280, 321
Henry, 198, 237, 322
Herro, 259, 318
high-rate code, 119
higher-order dc-constrained sequence,

253
higher-order edge graph, 174
higher-order null, 244
Hilden, 167, 323
Hodges, 167
Hoholdt, 198
Hollmann, 125, 126, 170, 193, 238,

323
holographic recording, 91
Horiguchi, 169

Howe, 167, 323
Howell, 64, 68, 166, 324

IEEE, vi, 309
IEEE ISIT, vi
Immink, 106, 125, 233, 293, 305, 324
information content, 9
information rate, 3
information source, 9
Information Theory, 11, 309
Ino, 287
input set, 36
input-restricted, 9, 61
Institute for Experimental Mathemat-

ics, vi, 309
inter-track interference, 90
interleaving, 119
intersymbol interference, 5, 51
inverse rank, 142
irreducible chain, 15
Isailovic, 325
Isozaki, 292

Jacoby, 127, 171, 191, 326
Janssen A.J.E.M., 316
Janssen, A.J.E.M., 211
jitter, 51
Jorgensen, 326
Justesen, 208, 211, 225, 228, 319

Kahlman, 288, 289, 326
Kamabe, 41, 192, 326
Kanota, 259, 260
Karabed, 172, 244, 292, 314
Kashyap, 64, 327
Katayama, 80
Kato, 91
Kautz, 52, 138, 328
Kerpez, 163, 207, 280, 328
Kim, 127, 191
Kitchens, 287, 313, 318
Knudson, 85
Knuth, 198, 236, 237, 257, 328
Kobayashi, 169, 305, 328

www.manaraa.com

INDEX 345

Kost, 171
Kuki, 117
Kunisa, 259, 275, 329

label, 18
labelled directed graph, 27
Labin, 138
Lagrange multipliers, 22
land, vi
LaserVision, 309
lattice diagram, 14
Lee, 81, 191
Lempel, 100
lexicographical index, 139
lexicographical order, 138, 145
Li, 301
Lin, 284, 292, 295
Lind, 172
Lindholm, 43
line code, 3
Litsyn, 256
Liu, 284, 295
liu, 292
look-ahead dc-control, 270
look-ahead encoding, 159, 170
look-ahead span, 170
look-up table, 106, 109, 121
low-disparity, 215

magnetic recording, 1
magnetization, 1, 5, 52
Mallinson, 292, 330
Mansuripur, 154, 319
Marcellin, 90, 333
Marcus, 83, 85, 111, 157, 172, 192,

305, 314, 331
Markov chain, 13, 64
Markov condition, 14
Markov information source, 18, 21,

29
Markov model, 264
Markov process, 217
mass data storage, 4
matched-spectral-null code, 244

maxentropic sequence, 7, 22, 64, 198
maxentropic source, 22, 204, 277
maximum likelihood detection, 83
maximum runlength, 51
maximum transition run, 79
maximum-length sequence, 261
McClellan, 119, 331
McEwen, 119
McLaughlin, 62, 89, 140, 318, 331
McMahon, 154
Mealy machine, 18, 201
measure of information content, 11
Mee, 115
memoryless source, 10
Menyennett, 81
merging bit, 97, 106, 130, 284
merging rule, 97
merging word, 293
Milenkovic, 140
Miller, 332
Ming, 275
MiniDisc, v
minimum runlength, 51
Modha, 317
modulation code, 2
Moivre, 57
Monti, 244, 253
Moon, 79, 81, 332
Moore machine, 18, 37, 176, 201
Morita, 169
Moriyama, 287
Moussouris, 171, 313
MRDS, 264
MSN (matched-spectral-null) code, 244
MTR constraint, 81
multi-level RLL sequences, 87
multi-mode code, 196, 258
multi-track (d, k)-constrained binary

codes, 90
multiple spacing, 81
multiple-spaced RLL sequence, 82
Murdock, 219, 333

www.manaraa.com

346 INDEX

Nagai, 259, 260
nat(ural unit), 11
National University of Singapore, 309
next-state function, 36, 181, 298
Nishiya, 81
Noda, 295
node, 14
noise, 51
noiseless capacity, 10, 152
noiseless channel, 10, 61
Norris, 278
notch width, 197, 207, 243
NRZ, 1, 53, 122
NRZI, 1, 53, 122, 232, 238, 291
Nyquist, 6, 333

O’Reilly, 33, 36, 317
Odaka, 287
Odlyzko, 73, 313
offspring state, 173
Ogawa, 293, 325
Orcutt, 91, 333
Ordentlich, 333
output function, 18, 36, 298
output set, 37
overwrite erasure, 232

packing density, 58
Papoulis, 29, 333
parity byte, 154
parity preserving word assignment,

52, 287
partial response, 83, 244
partition, 246, 254
Pascal’s triangle, 139, 214
Patapoutian, 120, 333
Patel, 85, 115, 171, 287, 291, 305,

333
path, 14
Patrovics, 142, 257
PCM, v
pdf, 30
peak detection, 53
Pelchat, 66

period, 32
Perrin, 73
Perron-Frobenius theorem, 22
phase average, 39, 40
phase-locked loop, 51
Phelps, 53
phrase, 25, 59, 65, 79, 93, 140
Pierobon, 29, 34, 200, 244, 315
pilot tone, 4, 195
pit, vi
pivot bit, 116, 128
Pohlman, 334
point-to-point communication link, 3
polarity bit, 196, 218, 257
Polya, 134
polynomial, 163, 201, 246
post-modulation, 154
power series, 134
power spectral density function, 31,

64, 66, 295
precoder, 52, 122, 234
prefix code, 164
prefix condition, 164
prefix-synchronized format, 71
principal state, 99, 164, 216
PRML, 80
probability density function, 30
pseudo random sequence, 5, 261
Pulse Code Modulation, v

random drawing algorithm, 269
random-walk, 200
rate, 3, 10
rate efficiency, 229
RDS, 198, 245, 247, 299
RDS-constrained sequence, 200
RDSS, 245, 247
read clock, 51
recording code, 2
recursive elimination technique, 99
redundancy, 2, 3, 10, 197, 213
Reeves, v
Reggiani, 334

www.manaraa.com

INDEX 347

regular chain, 15
Rensburg van, 191
repetitive-free, 71
Riordan, 134, 246, 335
RLL, vi, 4, 51
RLL sequence with multiple spacings,

82
RLL/MS constraint, 82
Robinson, 248
Roth, 91, 157, 192, 244, 251, 303,

305, 314, 335
Ruckenstein, 192
runlength, vi, 10, 51
runlength constraint, vi, 9, 51, 95,

137
runlength distribution, 65
running digital sum, 196, 198, 263,

277, 299

Saeki, 117
Saxena, 248
Schuetzenberger, 73
Scoopman, 4
scrambler, 5, 163, 260
scrambler polynomial, 163, 269
self clocking, 51
self synchronizing scrambler, 260
self-concatenable, 95
self-punctuating, 164
self-synchronizing scrambler, 260
semaphore codes, 73
sequence replacement technique, 118
set-concatenation, 111
Shaft, 52, 335
Shannon, 2, 9, 11, 19, 61, 272, 335
Shannon capacity, 4, 10
shaping function, 34
shift register, 167, 173
Shim, 302
Shirota, 335
Siegel, 62–64, 66, 85, 91, 172, 228,

244, 251, 292, 305, 313, 321,
335

Sincerbox, 91, 337
Skachek, 256, 336
sliding-block code, 95, 159
sliding-block compression, 157
sliding-block decoder, 161, 292
SMPTE, 309
Soljanin, 81, 90, 117, 233, 336
Sonntag, 119, 336
source alphabet, 18
source code, 12, 163
source data, 3
spectral lines, 41
spectral notch, 208, 243
spectral null, 195
spectral shaping, 4
spectrum, 29
splitting rule, 173
Stan, 336
state alphabet, 14
state diagram, 14, 103, 173
state merging, 172
state splitting, 155, 172, 176
state swapping, 299
state transition matrix, 16
state-transition diagram, 14, 15, 38,

65
stationary, 30
stationary state probability, 16
statistically independent sequences,

10
steady-state probability, 16
Stiffler, 71, 336
Stirling’s approximation, 214
stochastic matrix, 14
successor, 19, 176
sum variance, 197, 203, 209, 264, 266
surplus edges, 284
Swanson, 91, 171, 336
symbolic dynamics, 172
synchronization, 71, 115
synchronous variable length code, 164
systematic part of a codeword, 119

www.manaraa.com

348 INDEX

Tallini, 237, 248, 336
Talyansky, 91, 336
Tanaka, 127, 301
Tang, 52, 107, 138
Tartara, 334
Taylor series, 134
terminal state, 216
Tezcan, 258, 269
Tjalkens, 111, 337
Toeplitz matrix, 200
Tolhuizen, vii, 259, 318
tossing of a coin, 12
track, 1, 90
track width, 6
tracking, 195
transition matrix, 16
transition probability matrix, 14
transition table, 38
trellis diagram, 14, 216
Tronca, 29, 316
Tsinghua University, vii
Turing Machines, 309
two-dimensional RLL constraints, 90

uncertainty, 11, 19
uncoded symbol, 119
unifilar source, 18, 176, 204
unique decodability, 104
US National Television Academy, 309
US Patent, vi

Vardy, 91, 244, 251, 337
variable-length symbol, 24
variable-length synchronous code, 162
Vasic, 91, 140, 299, 337
vertex, 14
video disc, 309
video recorder, 5
Von Mises, 73

Wang, 290
Watkinson, 338
waveform, 2, 9, 29, 43, 51
weak constraints, 85

weakly constrained code, 85, 259
Weathers, 171, 338
Weber, 90, 109, 284, 313
weight of a state, 173
weighting system, 137
Weldon, 334
Westby, 232
Wicker, 338
Widmer, 231, 233, 338
Wiener-Kintchine relation, 31
Wijngaarden, van, 81, 115, 118, 120,

325
Wilf, 91, 316
Wilson, 316
Winchester drive, 98
window size, 159, 161
wireless infrared communications, 81
Wolf, 64, 91, 171, 172, 192, 305, 320
Won, 302
Wood, 339
worst case performance, 275
WRDS, 264
Wyner, 52, 320

Xie, 62
Xin, 247

Ytrehus, 323

Zeger, 91, 332
Zehavi, 64, 340
zero-disparity, 196, 247
Zook, 337

